
Consensus-related definitions

Andreea Alexandru

July 2021

Contents
1 Notation 1

2 Definitions 1

3 Possibility and impossibility results 7
3.1 Synchronous setting . 7

3.1.1 Corruptions and (non)determinism . 7
3.1.2 Communication complexity . 8

3.2 Asynchronous setting . 8

4 Ideal functionalities 9

1 Definitions
Definition 1 (Binary Byzantine Agreement (BA) [BKL19]). Let Π be a protocol executed by n parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}. The following notions hold whenever
there are at most t of the parties are corrupted.

• Weak validity: Π is t-weakly valid if the following holds: if every honest party’s input is equal
to the same value v, then every honest party outputs either v or ⊥.

• Validity: Π is t-valid if the following holds: if every honest party’s input is equal to the same
value v, then every honest party outputs v.

• Validity with termination: Π is t-valid with termination if the following holds: if every honest
party’s input is equal to the same value v, then every honest party outputs v and terminates.

• Weak consistency (consistency with abort): Π is t-weakly consistent if there is a v ∈ {0, 1}
such that every honest party outputs either v or ⊥.

• Consistency (consistency with unanimous abort): Π is t-consistent if there is a v ∈ {0, 1,⊥}
such that every honest party outputs v.

• Liveness: Π is t-live if every honest party outputs a value in {0, 1}.

• Termination: Π is t-terminating if every honest party terminates. Π has guarantees termination
if it is n-terminating.

If Π is t-valid, t-consistent, t-live and t-terminating, we say that Π is t-secure.

BA only makes sense for t < n/2.
Given a PKI, in a synchronous network BA can be achieved if and only if ts < n/2 parties are

corrupted and in an asynchronous network if there are ta < n/3 corruptions. Protocols tolerating
the optimal threshold and running in expected constant rounds are known [CR93, KK09]. BA can
be achieved with ts corruptions when run in synchronous mode and ta corruptions when run in asyn-
chronous mode if and only if 2ts + ta < n [BKL19].

1

Suppose there is a global polynomial-time computable predicate QID known to all parties, which
is determined by an external application. Each party may propose a value v together with a proof π
that should satisfy QID. Definition 2 holds for non-binary message domain.

Definition 2 (Validated Asynchronous Byzantine Agreement (VABA) [CKPS01]). A protocol solves
validated Byzantine agreement with predicate QID if it satisfies the following conditions except with
negligible probability:

• External validity: Any honest party that terminates for ID decides v validated by π such that
QID(v, π) holds.

• Agreement/Consistency: If some honest party decides v for ID, then any honest party that
terminates decides v for ID.

• Liveness/Termination: If all honest parties have been activated on ID and all associated
messages have been delivered, then all honest parties have decided for ID.

• Integrity: If all parties follow the protocol, and if some party decides v validated by π for ID,
then some party proposed v validated by π for ID.

• Efficiency: For every ID, the communication complexity for ID is probabilistically uniformly
bounded.

• Quality [AMS19]: The probability of choosing a value that was proposed by an honest party is
at least 1/2.

Validated Byzantine Agreement generalizes the primitive of agreement on a core set (see Defi-
nitions 8, 9). A binary validated Byzantine agreement protocol biased towards 1 is a protocol for
validated Byzantine agreement on values in {0, 1} such that the following condition holds:

Biased External Validity: If at least t+1 honest parties propose 1, then any honest party that
terminates for ID decides 1.

Definition 3 (Broadcast [BKL19]). Let Π be a protocol executed by parties P1, P2, . . . , Pn, where a
sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗ ∈ {0, 1} are all parties are guaranteed to terminate.
The following notions hold whenever there are at most t of the parties are corrupted.

• Weak validity: Π is t-weakly valid if the following holds: if P ∗ is honest, then every honest
party outputs either v∗ or ⊥.

• Validity: Π is t-valid if the following holds: if P ∗ is honest, then every honest party outputs v∗.

• Weak consistency: Π is t-weakly consistent if there is a v ∈ {0, 1} such that every honest party
otputs either v or ⊥.

• Consistency: Π is t-consistent if there is a v ∈ {0, 1,⊥} such that every honest party outputs v.

• Liveness: Π is t-live if every honest party outputs a value in {0, 1}.

If Π is t-valid, t-consistent, t-live and t-terminating, we say that Π is t-secure.

Authenticated broadcast (assuming a PKI) is possible for t < n; otherwise, it is only possible for
t < n/3.

In the synchronous case, for t < n/2, BA implies broadcast (using one additional round: in the
first round the dealer sends its input to all players, who then run BA on the values they received). For
t < n/2, a broadcast channel implies BA (each player broadcasts their value and then honest players
decide on the majority value).

Definition 4 (Reliable broadcast [BKL20]). Let Π be a protocol executed by parties P1, P2, . . . , Pn,
where a sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗ ∈ {0, 1} are all parties are guaranteed to
terminate. The following notions hold whenever there are at most t of the parties are corrupted.

• Validity: Π is t-valid if the following holds: if P ∗ is honest, then every honest party outputs v∗.

2

• Consistency: Π is t-consistent if the following holds: either no honest party outputs anything
or all honest parties output the same value v ∈ {0, 1}.

• Totality [CKPS01]: If some honest party delivers a message tagged with ID.j.s, then all honest
parties deliver some message tagged with ID.j.s, provided all honest parties have been activated
on ID.j.s and the adversary delivers all associated messages.

• Integrity [CKPS01]: For all ID, senders j, and sequence numbers s, every honest party delivers
at most one message v tagged with ID.j.s. Moreover, if all parties follow the protocol, then v
was previously reliably broadcast by Pj with sequence number s.

If Π is t-valid and t-consistent, we say that Π is t-secure.

The difference between Definitions 3 and 4 is that, when the sender is dishonest, reliable broadcast
allows that no honest party terminates.

Definition 5 (Verifiable broadcast [CKPS01]). A broadcast protocol is called verifiable if the following
holds, except with negligible probability: when an honest party has delivered payload m tagged with
ID, then it can produce a single protocol message M that it may send to other parties such that any
other honest party will deliver m tagged with ID upon receiving M (provided the other party has not
already delivered m).

We call M the message that completes the verifiable broadcast. This notion implies that there is a
predicate VID that the receiving party can apply to an arbitrary bit string for checking if it constitutes
a message that completes a verifiable broadcast tagged with ID.

Definition 6 (Consistent broadcast [CKPS01]). A protocol for consistent broadcast is a protocol for
reliable broadcast that does not necessarily satisfy totality. In other words, consistent broadcast makes
no provisions that two parties do deliver the payload message, but maintains consistency among the
actually delivered messages with the same senders and sequence numbers.

Definition 7 (Graded consensus [BKL19]). Let Π be a protocol executed by n parties P1, . . . , Pn,
where each party Pi begins holding input vi ∈ {0, 1}, and each party terminates upon generating
output. The following notions hold whenever there are at most t of the parties are corrupted.

• Graded validity: Π achieves t-graded validity if the following holds: if every honest party’s
input is equal to the same value v, then every honest party outputs (v, 2).

• Graded consistency: Π achieves t-graded consistency if the following hold: (1) if two honest
parties output grades g, g′, then |g−g′| ≤ 1 and (2) if two honest parties output (v, g) and (v′, g′)
with g, g′ ≥ 1, then v = v′.

• Liveness: Π is t-live if every honest party outputs (v, g) with either a v ∈ {0, 1} and g ≥ 1 or
v =⊥ and g = 0.

• Termination: Π is t-terminating if every honest party terminates. Π has guarantees termination
if it is n-terminating.

If Π is t-graded valid, t-graded consistent, t-live and t-terminating, we say that Π is t-secure.

Definition 8 ((A)synchronous Common Subset (ACS) [BKL20]). Let Π be a protocol executed by n
parties P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}∗ and parties output sets of
size at most n. The following notions hold whenever there are at most t of the parties are corrupted.

• Validity: Π is t-valid if the following holds: if every honest party’s input is equal to the same
value v, then every honest party outputs v.

• Consistency: Π is t-consistent if all honest parties output the same set S.

• Liveness: Π is t-live if every honest party produces an output.

• Set quality: Π has t-set quality if the following holds: if an honest party outputs a set S, then
S contains the inputs of at least t+ 1 honest parties.

3

Gather is a multi-dealer extension of RBC, where every party is also a dealer. The output of a
gather protocol is a gather-set.

Definition 9 (Gather-set [AJM+21]). A gather-set consists of at least n − t pairs (j, x), such that
j ∈ [n], x ∈ M, and each index j appears at most once, where t is the number of corruptions an
adversary can make. For any given gather-set X, define its index-set Indices(X) = {j|∃(j, x) ∈ X} to
be the set of the indices that appear in X.

The goal of the gather protocol is to output some common core gather-set X∗ such that all parties
output a super-set of this core. Note that a gather protocol does not solve consensus and
different parties may output different super-sets of the core.

For verifiable gather, the goal is to limit the power of the adversary to generate inconsistent outputs.
Intuitively, for any gather-set produced by the adversary, if it passes some verification protocol, it must
also be a super-set of the common core.

Definition 10 (Verifiable Gather [AJM+21]). A verifiable gather protocol consists of a pair of pro-
tocols (Gather, Verify) and takes as input an external validity function Validate which all parties have
access to. For Gather, each party i ∈ [n] has an externally valid input xi. Each party may decide to
output a gather-set Xi. After outputting the gather-set, parties must continue to update their local
state according to the Gather protocol in order for the verification protocol to continue working. The
properties of Gather (assuming a nonfaulty start) are:

• Binding core: Once the first nonfaulty party outputs a value from the Gather protocol, there
exists a core gather-set X∗ such that if a nonfaulty party i outputs the gather set Xi, then
X∗ ⊆ Xi.

• Internal validity: If (j, x) ∈ X∗ and j is nonfaulty at the time the first nonfaulty party
completed the Gather protocol, then x is the input of party j in Gather.

• Termination of output: All nonfaulty parties eventually output a gather-set.

The Verify protocol receives an index-set I and outputs a gather-set X such that Indices(X) = I.
Verify performs two actions at once: it verifies that the index set includes the indices of the binding
core, and recovers the gather-set only from the indices and the internal state of the verifying party.
A party i can check any index-set I, which is denoted by executing Verifyi(I). If the execution of
Verifyi(I) terminates and outputs a value, we say that i has verified the index-set I. The termination
properties of Verify (given that all nonfaulty parties start Gather) are:

• Completeness: For any two nonfaulty parties i and j, if j outputs Xj from Gather, then
Verifyi(Indices(Xj)) eventually terminates with the output Xj .

• Agreement on verification: For any two nonfaulty parties i and j, and any index-set I, if
Verifyi(I) terminates with the output X, then Verifyj(I) eventually terminates with the output X.

The correctness properties of Verify are:

• Agreement: All nonfaulty parties agree on values with common indices. For any two nonfaulty
i, j, and any index-sets I, J , if Verifyi(I) terminates with the output X and Verifyj(J) terminates
with the output Y , and (k, x) ∈ X, (k, y) ∈ Y , then x = y.

• Includes core: If Verifyi(I) terminates with the output X, then the gather-set X contains the
binding core gather-set X∗.

• External validity: If Verifyi(I) terminates with the output X for some nonfaulty party i, then
for each (j, x) ∈ X, the value x is externally valid.

Atomic broadcast guarantees a total order on messages such that honest parties deliver all messages
with a common tag in the same order.

Definition 11 (Atomic Broadcast [MXC+16]). An atomic broadcast protocol must satisfy the follow-
ing properties, all of which should hold with high probability (as a function 1 − negl(κ) of a security
parameter, κ) in an asynchronous network and in spite of an arbitrary adversary:

4

• Agreement: If any correct node outputs a transaction tx, then every correct node outputs tx.

• Total Order: If one correct node has output the sequence of transactions ⟨tx0, tx1, . . . , txj⟩ and
another has output ⟨tx′0, tx′1, . . . , tx′j′⟩, then txi = tx′i for all i ≤ min(j, j′).

• Censorship Resilience: If a transaction tx is input to n− t correct nodes, then it is eventually
output by every correct node.

Secure causal atomic broadcast (SC-ABC) is a useful protocol for building secure applications that
use state machine replication in a Byzantine setting. It provides atomic broadcast, which ensures that
all recipients receive the same sequence of messages, and also guarantees that the payload messages
arrive in an order that maintains “input causality” [CKPS01].

Definition 12 (Byzantine Atomic Broadcast [KKKNS21]). Each correct process pi ∈ Π can call
a_bcast(m, r) and output a_deliveri(m, r, k), pk ∈ Π. A Byzantine Atomic Broadcast (BAB) protocol
satisfies:

• Agreement: If a correct processes pi ∈ Π outputs a_deliveri(m, r, k), then every other correct
process pj ∈ Π eventually outputs a_deliverj(m, r, k) with probability 1.

• Integrity: For each round r ∈ N and process pk ∈ Π, a correct process pi ∈ Π outputs
a_deliveri(r,m, k) at most once regardless of m.

• Validity: If a correct process pk ∈ Π calls a_bcastk(m, r), then every correct processes pi ∈ Π
eventually outputs a_deliveri(m, r, k) with probability 1.

• Total order: If a correct process pi ∈ Π outputs a_deliveri(m, r, k) before a_deliveri(m
′, r′, k′),

then no correct process pj ∈ Π outputs a_deliverj(m
′, r′, k′) without first outputting

a_deliverj(m, r, k).

A reliable broadcast protocol satisfies the above agreement, integrity, and validity properties (with
messages r_bcast and r_deliver).

The above validity property requires that all messages broadcast by correct processes are eventually
ordered (with probability 1), whereas most Byzantine SMR protocols require that in an infinite run,
an infinite number of decisions are made, but some proposals by correct processes can be ignored. In
addition, the above definition for a BAB protocol satisfies chain quality: for every prefix of ordered
messages of size r(2f + 1), r ∈ N at least r(f + 1) were broadcast by correct processes.

Protocols for atomic broadcast (ABC) allow parties to maintain agreement on an ever-growing,
ordered sequence of blocks, where a block is a set of values called transactions. An ABC protocol does
not terminate but instead continues indefinitely. For the ABC protocol below, model the sequence of
blocks output by a party Pi via a write-once array Blocksi = Blocksi[1],Blocksi[2], . . . maintained by
Pi, each entry (or slot) of which is initially equal to ⊥. We say that Pi outputs a block in slot j when
Pi writes a block to Blocksi[j]; if Blocksi[j] ̸=⊥ then we call Blocksi[j] the block output by Pi in slot j.

Assume that each party Pi maintains a write-once array Epochsi = Epochsi[1],Epochsi[2], . . ., each
entry of which is initialized to 0. We say Pi enters epoch j when it sets Epochsi[j] := 1, and require:
for epoch j > 1, Pi enters epoch j−1 before entering epoch j; and Pi enters epoch j before outputting
a block in slot j.

An SMR protocol is run in a setting where parties asynchronously receive inputs (i.e., transactions)
as the protocol is being executed; each party Pi stores transactions it receives in a local buffer bufi. We
imagine these transactions as being provided to parties by some mechanism external to the protocol
(which could involve a gossip protocol run among the parties themselves), and make no assumptions
about the arrival times of these transactions at any of the parties.

Definition 13 (Atomic Broadcast (ABC) [BKL20]). An atomic broadcast protocol is a protocol Π in
which parties P1, . . . , Pn are provided with transactions as input and locally maintain arrays Blocks
and Epochs. The following notions hold whenever there are at most t of the parties are corrupted.

• Consistency: Π is t-consistent if an honest party outputs a block B in slot j then all parties
that remain honest output B in slot j.

5

• Strong liveness: Π is t-live if for any transaction tx for which every honest party received tx
before entering epoch j, every party that remains honest outputs a block that contains tx in
some slot j′ ≤ j.

• Completeness: Π is t-complete if for all j ≥ 0, every party that remains honest outputs some
block in slot j.

If Π is t-consistent, t-strongly live and t-complete, we say that Π is t-secure.

ABC with strong liveness implies weak BA (every honest party outputs a value, but may not
terminate).

Definition 14 (State Machine Replication (SMR) [MR21]). A state machine replication protocol is a
protocol in which a replica or client outputs a sequence of transactions log = ⟨tx0, tx1, . . . , txj⟩ if and
only if there exists a publicly verifiable proof π such that Verify(log, π) = 1, where Verify is a Boolean
function known to all parties. An SMR protocol must additionally satisfy the following:

• Safety: If ⟨tx0, tx1, . . . , txj⟩ and ⟨tx′0, tx′1, . . . , tx′j′⟩ are output by two honest replicas or clients,
then txi = tx′i for all i ≤ min(j, j′).

• Liveness: If a transaction tx is input to at least one honest replica, then every honest replica
eventually outputs a log containing tx.

Definition 15 (State Machine Replication with batching and commit [MR21]). A state machine
replication protocol is a protocol in which a replica or client outputs a sequence of transactions log =
⟨tx0, tx1, . . . , txj⟩ if and only if there exists a publicly verifiable proof π such that Verify(log, π) = 1,
where Verify is a Boolean function known to all parties.

Transactions batched within a block (B = ⟨tx0, tx1, . . . , txj⟩) are totally ordered, so a log of blogs
can be flattened in a log of transactions (i.e., the log of blocks B and B′ can be interpreted as a log of
transactions ⟨tx0, tx1, . . . , txj , tx′0, tx′1, . . . , tx′j′⟩).

The publicly verifiable proof for a block serves as the public verifiable proof for each transaction in
that block.

A replica commits to a new block by broadcasting a signature on the block. In the paradigm
of chained SMR, the last block of a log uniquely identifies the entire log (hence, signing a block is
equivalent to signing the entire log up to the block).

An SMR protocol must additionally satisfy the following:

• Safety: If two honest replicas commit two logs ⟨B0,B1, . . . ,Bj⟩ and ⟨B′
0,B

′
1, . . . ,B

′
j′⟩, then Bi =

B′
i for all i ≤ min(j, j′).

• Liveness: Every transaction is eventually committed by all honest replicas.

Definition 16 (Blockchain protocol [Shi20, Ch. 6]). In a blockchain protocol, a set of distributed
nodes aim to agree on an ever-growing, linearly-ordered log of transactions. The nodes each maintain
a growing linearly ordered log of transactions. Denote node i’s log in round r by LOGr

i (which is also
called a finalized log, i.e., every transaction or event contained in LOGr

i cannot be undone later). A
blockchain protocol must satisfy the following two properties:

• Consistency: All nodes have the same view of the linearly ordered log (despite the potential
delay), i.e., the honest nodes’ logs are prefixes of each other. More formally: for any honest nodes
i and j, and for any round numbers t and r, it must be that LOGt

i ⪯ LOGr
j or LOGt

i ⪰ LOGr
j .

• Liveness: If an honest node receives some transaction tx as input in some round r, then by the
end of round r + Tconf , all honest nodes’ local logs must include tx.

Assuming the existence of a PKI and digital signatures, a blockchain protocol can be constructed
by sequential composition of Byzantine broadcast.

Definition 17 (Bitcoin Backbone [GKL20]). Consider a chain C of length m and any nonnegative
integer k. We denote by C⌈k the chain resulting from the “pruning” of the k rightmost blocks. Note
that for k ≥ len(C), C⌈k is the empty string. If C1 is a prefix of C2, we write C1 ⪯ C2.

6

• k-Common Prefix Property: For any pair of honest parties P1, P2 adopting the chains C1, C2
at rounds r1 ≤ r2, it holds that C⌈k1 ⪯ C2.

• (µ, ℓ)-Chain Quality Property: For any honest party P with chain C, the ratio of adversarial
blocks among any ℓ consecutive blocks of C is at most µ.

• (τ, s)-Chain Growth Property: For any honest party P with chain C, it holds that after s
consecutive rounds it adopts a chain that is at least τ · s longer than the initial chain C.

Definition 18 (Robust Public Transaction Ledger [GKL20]). A protocol Π implements a robust public
transaction ledger in the q-bounded synchronous setting (where q is the number of brute force queries
a party can make in a round) if it organizes the ledger as a hashchain of transactions and it satisfies
the following two properties:

• k-Persistence If in some round r, an honest player reports a ledger that contains a transaction
tx in a block more than k blocks away from the end of the ledger (such transactions are called
“stable”), then tx will be reported by any honest player in the same position of the ledger for any
round r′ ≥ r.

• (u, k)-Liveness Provided a non-conflicting transaction tx is given as input to all honest players
continuously for u consecutive rounds, then all honest parties will report tx more than k block
from the end of the ledger, i.e., all report it as stable.

2 Possibility and impossibility results

2.1 Synchronous setting
2.1.1 Corruptions and (non)determinism

• With no prior setup, BB is possible when t < n/3 parties are corrupted.

• With no prior setup, BB is impossible when t ≥ n/3 parties are corrupted.

• If the parties have a pre-existing PKI, then BB is possible when t < n parties are corrupted.

• The optimal resilience for BA and BFT SMR in the synchronous authenticated setting is t < n/2.

• For t < n/2, BA implies BB and BB implies BA. Blockchain implies BA [GKL15] but for 1/3
adversarial power. Blockchain implies BB using proof of work [GKL15] for honest majority.

• Under PKI setup, SMR implies RBC (under the t < n/3 faults in both synchronous and asyn-
chronous cases) [MR21].

• Strong-termination SMR implies weak BA [BKL20].

• Byzantine consensus can be solved with t < n when using signatures. However, it is necessary
to have t < n/3 to solve this problem with symmetric authentication [PSL80].

2.1.2 Communication complexity

• Lamport, Shostak and Pease: BB for t < n/3 with exponential communication complexity (setup
free).

• King et al: BB for t < n/3 with Õ(n3/2) communication complexity, Boyle et al Õ(1) balanced
communication (setup free).

• Micali, Vaikuntanathan and Micali: BB for n/3 < t < n/2 with subquadratic communication
complexity (trusted setup).

• Dolev and Strong: BB for t < n with O(n3κ) communication complexity (bulletin PKI).

• Abraham et al: BB for t < n/2 adaptive corruptions with Õ(nκ communication complexity
(trusted setup).

7

• Chan et al: BB for adaptive t < (1 − ϵ)n corruptions with O(n2κ2 communication complexity
(trusted PKI).

• Momose and Ren: BB for t < n/2 adaptive corruptions with Õ(n2κ) communication complexity
(bulletin PKI).

• Tsimos, Loss and Papamanthou: Random BB for t < (1 − ϵ)n static corruptions with O(n2κ2)
communication complexity and O(t+1+log n) round complexity (bulletin PKI) and Parallel BB
for t < (1− ϵ)n adaptive corruptions with O(n2κ4) communication complexity (trusted PKI).

2.2 Asynchronous setting
• Every asynchronous protocol solving BA has executions that do not terminate [FLP85]. Hence,

deterministic asynchronous atomic broadcast is impossible [MXC+16]. SMR in asynchronous
networks is also subject to this limitation.

• With prior setup, randomized algorithms for solving BB, BA, SMR exist for t < n/3.

• No partially synchronous protocol can realize BA for t ≥ n/3 [DLS88] even with setup (and with
probability greater than 2/3).

• For t < n/3, BA implies BB and BB implies BA? But RBC does not imply BA.

• Strong-termination SMR implies weak BA [BKL20].

• (Binary) Byzantine agreement and atomic broadcast are equivalent in the asynchronous setting,
assuming a secure signature scheme and provided t < n/3 (first stated in [CT96, p. 248] for
crash faults and proved in [Sec. 5.3][CKPS01]). Note that using an appropriately defined notion
of authenticated atomic broadcast, this could also be implemented without the additional digital
signatures in the reduction.

• BA with weak validity only does not solve Atomic Broadcast or State Machine Replication
(SMR) [AMS19].

• Simple reduction between BA and Atomic Broadcast requires a strong validity property for
asynchronous networks [Tang,Lu,Lu,Wang PODC 2020]. It is intractable to get strong validity
asynchronous BA.

• The existence of a partially synchronous blockchain protocol implies the existence of a partially
synchronous BA protocol, for t < n/3. In the reverse direction, given a partially synchronous BA
protocol resilient against t corrupt nodes, we can construct a partially synchronous blockchain
protocol resilient against t corrupt nodes [Shi20] (for arbitrary t).

• Any protocol solving verifiable secret sharing in the asynchronous model with optimal resilience
must have a positive probability of deadlock [BOKR94].

3 Ideal functionalities
Synchronous broadcast [HZ10].

Functionality FBC

1. Ps sends its input xs to functionality FBC .

2. FBC sends xs to all parties P ∈ P.

Synchronous broadcast without secrecy [GKKZ11].

8

Functionality FBC

1. Upon receiving (Bcast, sid,m) from Pi, send (Bcast, sid, Pi,m) to all parties P ∈ P and
to the adversary S.

Synchronous unfair broadcast [HZ10].

Functionality FUBC

1. Ps sends its input xs to functionality FUBC .

2. FUBC sends xs to the adversary.

3. If Ps is corrupted then the adversary sends a value to FUBC ; FUBC denotes the received
value by x′

s (if Ps is not corrupted then FUBC sets x′
s := xs).

4. FUBC sends x′
s to all parties P ∈ P.

Synchronous relaxed broadcast [GKKZ11] (reformulation of FUBC).

Functionality FRelBC

1. Upon receiving (Bcast, sid,m) from Pi, send (Bcast, sid, Pi,m) to the adversary S.

2. Upon receiving m′ from the adversary S, do:

• If Pi is corrupted, send (Bcast, sid, Pi,m
′) to all parties P ∈ P.

• If Pi is not corrupted, send (Bcast, sid, Pi,m) to all parties P ∈ P.

Synchronous UC-Byzantine Agreement as a Canonical Synchronous Functionality (functionality
without probabilistic termination) [CCGZ19].

Functionality FV
BA

Each party Pi ∈ P has input xi ∈ V .

1. Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn and the adver-
sary’s value to ⊥.

2. In round ρ = 1:

• Upon receiving (adv-input, sid, v) from the adversary, set a← v.

• Upon receiving a message (input, sid, v) from some party Pi ∈ P, set xi ← v and
send (leakage, sid, Pi, xi) to the adversary.

3. In round ρ = 2:

• Upon receiving (adv-input, sid, v) from the adversary, if y1 = . . . = yn =⊥, set
a← v. Otherwise, discard the message.

• Upon receiving a message (fetch-output, sid, v) from some party Pi ∈ P, if y1 =
. . . = yn =⊥ compute (y1, . . . , yn) = (y, . . . , y) such that y = x if there exists a
x = xi for n− t input values xi, otherwise y = a. Next, send (output, sid, y) to Pi

and (fetch-output, sid, Pi) to the adversary.

We need wrappers around FV
BA if we want to simulate probabilistic termination.

ABC from [BKL20] (see Definition 13).

9

Functionality FABC

1. For each party Pi, instantiate Epochi[j] = 0, for j ≥ 1. Initialize j = 1.

2. While true do:

(a) Set Epochi[j] = 1.

(b) Upon receiving n − t inputs (input, bufi, j, Pi) for distinct i, set Bj =⋃
Pi∈Preceived

bufi.

(c) For each i, set Blocksi[j] = Bj and output (output,Blocksi[j], j, Pi).

(d) j = j + 1.

In the first epoch, each party sends its first transaction and the adversary de-
cides if it corrupts the party and change the input. For epochs j > 1, after
receiving (output,Blocksi[1], 1, Pi), . . . , (output,Blocksi[j − 1], j − 1, Pi), party Pi sends
(input, bufi, j, Pi) to FABC , and the adversary decides if it corrupts the party and change
the input.

References
[AJM+21] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin

Tomescu. Reaching consensus for asynchronous distributed key generation. arXiv preprint
arXiv:2102.09041, 2021.

[AMS19] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal val-
idated asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 337–346, 2019.

[BKL19] Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asyn-
chronous fallback guarantees. In Theory of Cryptography Conference, pages 131–150.
Springer, 2019.

[BKL20] Erica Blum, Jonathan Katz, and Julian Loss. Network-agnostic state machine replication.
arXiv preprint arXiv:2002.03437, 2020.

[BOKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with
optimal resilience. In Proceedings of the thirteenth annual ACM symposium on Principles
of distributed computing, pages 183–192, 1994.

[CCGZ19] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. Probabilistic termination and
composability of cryptographic protocols. Journal of Cryptology, 32(3):690–741, 2019.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, vol-
ume 99, pages 173–186, 1999.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal re-
silience. In Proceedings of the twenty-fifth annual ACM symposium on Theory of comput-
ing, pages 42–51, 1993.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

10

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[GKKZ11] Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively
secure broadcast, revisited. In Proceedings of the 30th annual ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, pages 179–186, 2011.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Annual international conference on the theory and applications
of cryptographic techniques, pages 281–310. Springer, 2015.

[GKL20] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. Cryptology ePrint Archive, Report 2014/765, 2020. https:
//ia.cr/2014/765.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 466–485.
Springer, 2010.

[KK09] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. Journal of Computer and System Sciences, 75(2):91–112, 2009.

[KKKNS21] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you
need is dag. In Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, pages 165–175. Association for Computing Machinery (ACM),
2021.

[LM18] Julian Loss and Tal Moran. Combining asynchronous and synchronous byzantine agree-
ment: The best of both worlds. IACR Cryptol. ePrint Arch., 2018:235, 2018.

[MR21] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. Cryptology
ePrint Archive, Report 2021/671, 2021. https://eprint.iacr.org/2021/671.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 31–42, 2016.

[Shi20] Elaine Shi. Foundations of distributed consensus and blockchains, 2020.

11

https://ia.cr/2014/765
https://ia.cr/2014/765
https://eprint.iacr.org/2021/671

	Notation
	Definitions
	Possibility and impossibility results
	Synchronous setting
	Corruptions and (non)determinism
	Communication complexity

	Asynchronous setting

	Ideal functionalities

