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ABSTRACT
We consider the problem of implementing a Linear Quadratic Gauss-

ian (LQG) controller on a distributed system, while maintaining

the privacy of the measurements, state estimates, control inputs

and system model. The component sub-systems and actuator out-

source the LQG computation to a cloud controller and encrypt their

signals and matrices. The encryption scheme used is Labeled Ho-

momorphic Encryption, which supports the evaluation of degree-2

polynomials on encrypted data, by attaching a unique label to each

piece of data and using the fact that the outsourced computation is

known by the actuator. We write the state estimate update and con-

trol computation as multivariate polynomials in the encrypted data

and propose an extension to the Labeled Homomorphic Encryption

scheme that achieves the evaluation of low-degree polynomials on

encrypted data, with degree larger than two. We showcase the nu-

merical results of the proposed protocol for a temperature control

application that indicates competitive online times.

CCS CONCEPTS
• Security and privacy → Public key encryption; Privacy-
preserving protocols; • Information systems → Process con-
trol systems; • Computer systems organization → Embedded
and cyber-physical systems.
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1 INTRODUCTION
In the setting of distributed systems with large number of sensors

that collect data over large periods of times, e.g., FitBit data, med-

ical monitoring data or parameters in a plant, the data from the

sensors is aggregated, stored and processed at a powerful server,

generically called cloud. Requesting parties submit the processing
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algorithms they want to perform on the data stored at the cloud.

Although cloud computing solves the storage and computation

problems, it also raises issues about trust and privacy of the data

and results [34]. Users agree to participate in the computation if

their data is guaranteed to remain concealed from both the cloud

and requester. Similarly, a requesting party desires to keep private

the parameters of its processing algorithms, as well as the result of

the computation.

Usually, in cloud-outsourced control and estimation applications,

the controller or planner knows the algorithms that are outsourced

to the cloud, for instance, Kalman Filter, Linear Quadratic (Gauss-

ian) Regulator or Model Predictive Controller. An encrypted Linear

Quadratic Gaussian (LQG) controller can be useful for any appli-

cation that requires distributed private data from sensors to be

aggregated and steered by a potentially untrustworthy cloud. Ex-

amples of such applications include: power generation regulation,

robots tracking targets in a dangerous environment, temperature

regulation in smart buildings, packet routing in a private computer

network. Since these applications involve multiple entities, the ma-

trices in the model will depend on local private data. This requires

both sensor data and system parameters to be private. In the rest of

the paper, we will focus on the problem of secure implementation

of an LQG controller on private data.

General frameworks under the umbrella of Secure Multiparty

Computation (SMPC) [9] have been proposed to solve the problem

of private computations with data collected from multiple parties.

While their generality is desirable in some cases, it is also advanta-

geous to exploit the particularities of the specific architecture and

the computation that is performed. Specifically, one of the solu-

tions in the literature called Labeled Homomorphic Encryption [4],

which we will explore in this paper, achieves accelerated complex

operations on encrypted data by making use of the knowledge of

the algorithm the cloud computes by the requester party.

1.1 Related work
There are several recent approaches in the literature that explore

privacy-preserving filters and controllers, with the goal of con-

cealing the private information from untrusted parties. Linear en-

crypted controllers and filters are presented in [12, 27] using addi-

tively homomorphic encryption – the signals are encrypted but the

gains are public; using multiplicatively homomorphic encryption

in [22, 35] – both the gains and signals are encrypted, but the de-

cryptor is able to find out not just the final result, but also products

of scalars before summation, which can leak at least which signals

or gain entries are zero; and using fully homomorphic encryption

in [20] – both the gains and signals are encrypted and only the final

result is revealed, but the scheme is computationally prohibitive.

SMPC approaches, based on secret sharing schemes that can be

combined with homomorphic encryption and/or garbled circuits,

https://doi.org/10.1145/3302509.3311049
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are considered in the following works: an encrypted Extended

Kalman Filter was explored in [16], where the encrypted gains are

computed by repeated exchanges between a client and a server that

achieve encrypted complex operations; an encrypted linear Finite

Impulse Response filter with plaintext coefficients is computed

in [31]; and in [2], an encryptedmulti-sensor information filtering is

proposed, where a grid operator aggregates the encrypted estimates

from sensors and sends it to the mobile agent requesting its location.

An approach with a different privacy goal is Differential Privacy

(DP), which adds randomness to the inputs, computation or output,

so that the inputs cannot be reconstructed from the resulting output.

Techniques from works such as Kalman Filter with DP [23] and

LQG with DP [17] can be used to augment the output privacy of a

secure filter and controller. However, such techniques reduce the

accuracy of the result and stability is difficult to guarantee.

1.2 Our contribution
We consider the problem of developing a protocol that privately per-

forms the estimation and control as described by a Linear Quadratic

Gaussian (LQG) controller, without revealing anything about the
private states, gain matrices, control inputs and intermediary steps,
and while achieving good running times. The contributions of this
paper are the following. First, we describe the cryptographic tool

Labeled Homomorphic Encryption and show how the labels can be

naturally exploited in estimation and control applications. Second,

LQG requires evaluating a polynomial on encrypted data, hence,

we propose an extension to the Labeled Homomorphic Encryption

scheme that can evaluate an encrypted polynomial of degree d ≥ 2

by using offline communication and computation. Third, we pro-

pose a protocol that achieves the fully encrypted execution of an

LQG controller on encrypted model and encrypted data and allows

different parties to have different keys. We provide two solutions,

depending on how much precomputed information is available

and on the architecture of the problem. Finally, we illustrate the

performance of the encrypted LQG on data from a temperature

control application.

1.3 Notation
We denote the n × n identity matrix by In and a matrix of zeros

of size m × n by 0m×n . For a positive integer n, we use [n] :=

{1, . . . ,n}. We call messages that are not encrypted plaintexts, and
the encrypted messages ciphertexts. {0, 1}∗ denotes a sequence of

bits of unspecified length. For a set S , s
$

← S denotes drawing s
uniformly at random from S . The security parameter is called λ.

2 PROBLEM SETUP
We consider agents or sub-systems in the architecture in Figure 1,

with local sensors, and an actuator that needs to apply the control

inputs based on the measurements and references from the agents.

The agents and the actuator employ a cloud server to privately com-

pute a Linear Quadratic Gaussian (LQG) controller, without having

access to the model of the system, control gains, the measurements

or the desired references. The system has the following model:

xk+1 = Axk + Buk +wk

zk = Cxk +vk , k = 0, . . . ,N − 1,
(1)

Figure 1: Architecture of the cloud-outsourced LQG prob-
lem: the sub-systems send their measurements and desired
references to the cloud. The cloud has to run the LQG algo-
rithm on the measurements and the system’s matrices and
send the result to the actuator. The variables in the figure
are described in equations (1)–(4).

where xk ,wk ∈ R
n ,uk ∈ R

m , zk ,vk ∈ R
p
. Each sub-system

i ∈ [N ] has a partition of the states x ik ∈ R
ni
, a partition of the con-

trol inputsuik ∈ R
mi

and a partition of the measurements zik ∈ R
pi
,

such that their union forms system (1). The distributed system has

one proxy entity that facilitates the cloud-computation: a setup en-

tity, which holds the model of the system, that is not fully known by

each individual sub-system. As we will see, the sub-systems want

to conceal their data from the other participants in the computation,

hence having partitions of the data is justified in this context.

We assume that the process and measurement noise vectors are

uncorrelated i.i.d. random variables with zero mean and known

positive semi-definite and respectively, positive definite covariance

matrices: E[wkw
⊺
k ] = W and E[vkv

⊺
k ] = V . The initial state is

a random Gaussian variable with a finite mean and covariance

matrix. Furthermore, we assume that {x0,w1, . . . ,wk ,v1, . . . ,vk }
are mutually independent.

Our first control objective is to achieve stability for the system (1).

The separation principle [5] allows the optimal control problem

to be divided into two successive steps: the design of an optimal

estimator for the system’s state, which is the Kalman Filter under

the assumption that the process and measurement noise vectors

have a Gaussian distribution; and the design of an optimal controller

for the system with the perfect information given by the estimator,

which we achieve by minimizing a quadratic cost.

Our second control objective is to steer the system to a reference r
for the measurements, xr for the states andur for the control inputs,
composed by the desired references of each sub-system. We want

to determine the control input uk such that the output deviation

∆zk := zk − r , the state deviation ∆xk := xk − xr and the control

deviation ∆uk := uk −ur are small for all values of k . We can write

the system:

∆xk+1 = A∆xk + B∆uk +wk

∆zk = C∆xk +vk , k = 0, . . . ,N − 1,
(2)

For simplicity, we will consider the stationary LQG problem in

this paper, which is often used in real-time implementations due to

the low memory requirements [5]. Assuming that the process and
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measurement noise processes are white, Gaussian and stationary,

the controllability (stabilizability) of the pairs (A,B) and (A,W
1

2 )

and the observability (detectability) of the pairs (A,C ) and (A,Q
1

2 ),
the LQG problem with the cost over a horizon T :

J = E
[
∆z

⊺
TQ∆zT +

T−1∑
k=0

(
∆z

⊺
kQ∆zk + ∆u

⊺
k R∆uk

)]
, (3)

allows an infinite horizon solution [3, 5]:

uk = −K (x̂k − xr ) + ur ,

x̂k+1 = Ax̂k + Buk + L (zk+1 −C (Ax̂k + Buk )) ,
(4)

where x̂ is the estimated state. The steady-state Kalman and control

gains are obtained by solving the following discrete algebraic Riccati

equations, which converge under the assumptions described above:

L = PC⊺ (CPC⊺ +V )−1 , K = (B⊺SB + R)−1 B⊺SA

P = A⊺PA −A⊺PC⊺ (CPC⊺ +V )−1CPA +W (5)

S = A⊺SA −A⊺SB (B⊺SB + R)−1 B⊺SA +Q .

The matrices A − BK and A − LCA determine the stability of the

closed-loop system and the quality of the estimation. Notice that an

iteration of the LQG (4) can be written as a multivariate polynomial

in x̂k , uk , xr , ur and A,B,C,K ,L.
The LQG control presented can be abstracted in the following

general framework in Figure 2. Consider a cloud server that collects

encrypted data from several clients, which in Figure 1 were the

sub-systems. The data represents time series and is labeled with

the corresponding time. A requester, which in Figure 1 was the

actuator, makes queries, e.g., an LQG iteration, that can be written

as multivariate polynomials over the data stored at the cloud server

and solicits the result. We allow semi-honest parties, which are

parties that follow the preset protocols, but can locally process the

data in order to try to infer private information. This is a reason-

able assumption, as cloud services are reputation based and cannot

afford to tamper with the clients’ data. Furthermore, in this paper,

we consider the classical computational privacy definition of an

interactive protocol, given in [14, Ch. 7]. We assume that only com-

putations that have been previously agreed upon can be requested,

such that the privacy of the data stored at the cloud server is not

broken (e.g. the requester cannot simply ask for the data).

The privacy goal we consider is to develop a solution that allows

the cloud to efficiently perform the LQG computation and send the

results to the requester, without finding out anything about the

private data and results, as well as preserving the privacy of the

input data with respect to the requester.

3 LABELED HOMOMORPHIC ENCRYPTION
AND EXTENSION

Labeled Homomorphic Encryption, abbreviated as LabHE, was re-

cently introduced in [4] and is a scheme that allows the computation

of multivariate degree-two polynomials on encrypted data. The

appeal of LabHE is that it uses a simple addendum to an additively

homomorphic scheme in order to obtain, apart from unlimited ad-

ditions between encrypted values, also a multiplication between

two encrypted values. The underlying homomorphic encryption

scheme can be instantiated with most of the existing schemes and

Figure 2: The clients send their private data (collected overT
time steps or stored in a buffer) to a cloud server. A requester
sends a query to the cloud,which evaluates it on the data and
sends the result to the requester.

inherits their properties. LabHE exploits the common trait that the

party that requests the result of the encrypted computation knows

what the computation is.

In what follows, we will first describe the cryptographic pre-

liminaries of LabHE and then present the primitives that compose

it. Furthermore, we propose a two-party extension of LabHE that

achieves more encrypted multiplications at the expense of offline

computation and communication. This extension is critical for the

execution of LQG described in Section 2 in an encrypted manner.

3.1 Preliminaries
3.1.1 Additively Homomorphic Encryption. Additively Homomor-

phic Encryptions schemes, abbreviated as AHE, allow a party that

only has encryptions of two messages to obtain an encryption of

their sum. AHE can be instantiated by various public key additively

homomorphic encryption schemes such as [10, 19, 25].

Let AHE=( ˆ
KeyGen, ˆE, ˆD, ˆ

Add, ˆ
cMlt) be an additively homomor-

phic encryption scheme, with M the message space and
ˆC the

ciphertext space, where we will use the following abstract nota-

tion: ⊕̂ denotes the addition on
ˆC and ⊗̂ denotes the multiplication

between a plaintext and a ciphertext. We will denote the encryp-

tion of a message m ∈ M by [[m]] as a shorthand notation for

ˆ
E(public key,m).

(1)
ˆ

KeyGen(1λ ): Takes the security parameter λ and outputs a pub-

lic key
ˆ
pk and a private key

ˆ
sk.

(2)
ˆ
E( ˆpk,m): Takes the public key and a message m ∈ M and

outputs a ciphertext [[m]] ∈ ˆC.

(3)
ˆ
D( ˆsk, c ): Takes the private key and a ciphertext c ∈ ˆC and

outputs the message that was encryptedm′ ∈ M.

(4)
ˆ

Add(c1, c2): Takes two ciphertexts c1, c2 ∈ ˆC and outputs ci-

phertext c = c1⊕̂c2 ∈ ˆC such that:

ˆ
D( ˆsk, c ) = ˆ

D( ˆsk, c1) + ˆ
D( ˆsk, c2).

(5)
ˆ

cMlt(m1, c2): Takes plaintextm1 ∈ M and ciphertext c2 ∈ ˆC

and outputs ciphertext c =m1⊗̂c2 ∈ ˆC such that:

ˆ
D( ˆsk, c ) =m1 · ˆD( ˆsk, c2).

We consider only instantiations of the AHE that are proved

to be semantically secure [15], [14, Ch. 4] and circuit-private [7].

Essentially, an encryption scheme achieves semantic security (or
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equivalently, ciphertext indistinguishability), if an adversary that

is given two distinct plaintexts and an encryption of one of them

is not able to distinguish which plaintext corresponds to the given

ciphertext. Circuit-privacy defines the concept that the result of

an evaluation primitive (e.g.
ˆ

Add,
ˆ

cMlt) does not reveal any infor-

mation about the inputs of that primitive and about the operation

evaluated. More details are provided in Appendix A.

3.1.2 Secret sharing. Secret sharing [26, 29] is a scheme that dis-

tributes a private message to a number of parties, by splitting it

into shares. Then, the private message can be reconstructed only

by an authorized subset of parties, which combine their shares.

One common and simple scheme is the additive 2-out-of-2 secret

sharing scheme, which involves a party splitting its secret message

m ∈ G , whereG is an additive abelian group, into two shares in the

following way: generate uniformly at random an element b ∈ G,
subtract it from the message and then distribute the shares b and

m − b. This can be also thought of as an one-time pad variant onG .
Both shares are needed in order to recover the secret. The 2-out-of-2

secret sharing scheme achieves perfect secrecy, which means that

the shares of two distinct messages are indistinguishable from one

another, i.e., have identical distributions [24].

3.1.3 Pseudorandom generators. Pseudorandom generators are ef-

ficient deterministic functions that expand short seeds into longer

pseudorandom bit sequences, that are computationally indistin-

guishable from truly random sequences. More details can be found

in [13, Ch. 3].

3.2 Labeled Homomorphic Encryption
LabHE can process data from multiple users with different private

keys, as long as the requesting party has a master key. This scheme

makes use of the fact that the decryptor (or requester in Figure 2)

knows the query to be executed on the encrypted data, which we

will refer to as a program. Furthermore, we want a cloud server

that only has access to the encrypted data to be able to perform

the program on the encrypted data and the decryptor to be able to

decrypt the result. To this end, the inputs to the program need to be

uniquely identified. Therefore, an encryptor (or client in Figure 2)

assigns a unique label to each message and sends the encrypted

data along with the corresponding encrypted labels to the server.

Labels can be time instances, locations, id numbers etc.

Denote byM the message space. A program that has labeled

inputs is called a labeled program [4].

Definition 1. A labeled program P is a tuple ( f ,τ1, . . . ,τn )
where f : Mn → M is an admissible function on n variables and
τi ∈ {0, 1}

∗ is the label of the i-th input of f . Given t programs
P1, . . . ,Pt and an admissible function д :Mt →M, the composed
program Pд is obtained by evaluating д on the outputs of P1, . . . ,Pt ,
and can be denoted compactly as Pд = д(P1, . . . ,Pt ). The labeled
inputs of Pд are all the distinct labeled inputs of P1, . . . ,Pt . ⋄

Definition 2. An admissible function f :Mn → M is a mul-
tivariate polynomial of degree d on n variables, where d = 2 for
the original version of LabHE and d ≥ 2 for the extended version
described in Section 3.3. ⋄

LabHE is constructed from an AHE scheme with the require-

ment that the message space must be a public ring in which it is

possible to efficiently sample elements uniformly at random. The

idea is that an encryptor splits their private message as described

in Section 3.1.2 into a random value (secret) and the difference

between the message and the secret. The encryptor then forms the

ciphertext from the encryption of the first share along with the

second share. For efficiency, instead of taking the secret to be a

uniformly random value, we take it to be the output of a pseudoran-

dom generator applied to the corresponding label. The label acts

like the seed of the pseudo-random generator.

LetM be the message space of the AHE scheme, L ⊂ {0, 1}∗

denote a finite set of labels and F : {0, 1}k × {0, 1}∗ → M be

a pseudorandom function that takes as inputs a key of size k =
poly(λ), where λ is the security parameter, and a label fromL. Then

LabHE is defined as a tuple LabHE = (Init,KeyGen,E,Eval,D):

(1) Init(1λ ): Takes the security parameter λ and outputs master se-

cret key msk and master public key mpk for AHE.

(2) KeyGen(mpk): Takes the master public key mpk and outputs for

each user i a user secret key uski and a user public key upki.

(3) E(mpk, upk,τ ,m): Takes the master public key, a user public key,

a label τ ∈ L and a messagem ∈ M and outputs a ciphertext

C = (a, β ). It is composed of an online and offline part:

• Off-E(usk,τ ): Computes the secret b ← F (usk,τ ) and outputs

C
off
= (b, [[b]]).

• On-E(C
off
,m): Outputs C = (m − b, [[b]]) =: (a, β ) ∈ M × ˆC.

(4) Eval(mpk, f ,C1, . . . ,Ct ): Takes the master public key, an admis-

sible function f :Mt →M, t ciphertexts and returns a cipher-

text C . Eval is composed of the following building blocks:

• Mlt(C1,C2): TakesCi = (ai , βi ) ∈ M× ˆC for i = 1, 2 and outputs

C = [[a1 ·a2]]⊕̂(a1⊗̂β2)⊕̂(a2⊗̂β1) = [[m1 ·m2−b1 ·b2]] =: α ∈ ˆC.

• Add(C1,C2): If Ci = (ai , βi ) ∈ M × ˆC for i = 1, 2, then outputs

C = (a1 + a2, β1⊕̂β2) =: (a, β ) ∈ M × ˆC. If both Ci = αi ∈ ˆC,

for i = 1, 2, then outputs C = α1⊕̂α2 =: α ∈ ˆC. If C1 = (a1, β1) ∈

M × ˆC and C2 = α2 ∈ ˆC, then outputs C = (a1, β1⊕̂α2) =:

(a, β ) ∈ M × ˆC.

• cMlt(c,C ′): Takes a plaintext c ∈ M and a ciphertext C ′. If C ′ =

(a′, β ′) ∈ M × ˆC, outputs C = (c · a′, c ⊗̂β ′) =: (a, β ) ∈ M × ˆC.

If C ′ = α ′ ∈ ˆC, outputs C = c ⊗̂α ′ =: α ∈ ˆC.

(5) D(msk, usk1, ...,t ,P,C ): Takes the master secret key, a vector of

t user secret keys, a labeled program P and a ciphertext C . It is
composed of an online and offline part:

• Off-D(msk,P): Parses P as ( f ,τ1, . . . ,τt ). For i ∈ [t], it com-

putes the secrets bi = F (uski ,τi ), b = f (b1, . . . ,bt ) and outputs

mskP (msk, b).

• On-D(skP ,C ): IfC = (a, β ) ∈ M× ˆC: either output (i)m = a+b or

(ii) outputm = a+ ˆ
D(msk, β ). IfC ∈ ˆC, outputm = ˆ

D(msk,C )+b.

The cost of an online encryption is the cost of an addition inM.

The cost of online decryption is independent of P and only depends

on the complexity of
ˆ
D.

In [4] it is proved that LabHE satisfies correctness (the probability

of the scheme not correctly evaluating the allowed class of functions

is negligible), succinctness (the ciphertexts have polynomial length

in the security parameter), semantic security (the ciphertexts are

indistinguishable from one another) and context-hiding (decrypting
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the ciphertext does not reveal anything about the inputs of the

computed function, only the result of the function on those inputs).

3.3 New extension of LabHE to degree
d-polynomials

In [7], the authors show how to obtain the evaluation of degree-3

and 4 polynomials over encrypted data by using, instead of AHE,

schemes that are level-2 homomorphic, i.e., already support en-

crypted additions and one encryptedmultiplication, such as BGN [6].

In general, higher level homomorphic schemes involve more com-

plex computations than AHE schemes. The solution proposed in [7]

modifies the BGN scheme, and the resulting scheme allows only

a small message space, which is a problem since the secrets gen-

erated by the pseudorandom generator are very large and require

expensive decryption (solving a discrete logarithm problem).

We propose an alternative extension for LabHE that achieves the

evaluation of degree-d polynomials over encrypted data. The ad-

vantage of our method is that the online computations and commu-

nication are replaced by offline computations and communication.

However, offline communication will not be polynomial in d .
The multiplication of two encrypted values in LabHE is possible

because the party that performs the multiplication has access to

[[b1]] and [[b2]] for two ciphertextsC1,C2. We notice that if a party

that wants to perform a multiplication between three ciphertexts

C1 = (m1 −b1, [[b1]]),C2 = (m2 −b2, [[b2]]),C3 = (m3 −b3, [[b3]])
has access to [[b1 · b2]], [[b1 · b3]], [[b2 · b3]], then it can compute

[[m1 ·m2 ·m3 − b1 · b2 · b3]]:

m1m2m3 − b1b2b3 = (m1 − b1) (m2 − b2) (m3 − b3)+

+ (m1 − b1)b2b3 + (m2 − b2)b1b3 + (m3 − b3)b1b2+

+ (m1 − b1) (m2 − b2)b3 + (m1 − b1) (m3 − b3)b2+

+ (m2 − b2) (m3 − b3)b1.

The extension of LabHE is defined as a tuple eLabHE = (Init,
KeyGen,E,Eval1,Eval2,D), where the primitives Init, KeyGen, E

and D are inherited from the LabHE scheme. We define Eval1, that

is like an offline part of the Eval primitive, and has to be performed

by the decryptor:

4.1) Eval1 (mpk,msk, upk,P): Takes the master public key, the mas-

ter secret key, the users’ public keys and the program P =

( f ,τ1, . . . ,τt ). Let upk = (upk
1
, . . . , upkl ). For all j ∈ [l], it

uses the master secret key to get the users’ secret keys uskj ←
ˆ
D(msk, upkj ). Then, it computesbi ← F (uskji ,τi ), for i ∈ [t], j ∈

[l]. For each monomial of order k in f , denoted as дk (τT ), for
2 < k < d and T ⊆ [t], |T | = k , it computes bi ← F (K ,τi ), i ∈ T .

Then, it outputs д̃k (b) =
{[ [∏

i ∈S bi
] ] ���S ⊆ T , |S | > 2

}
.

We denote by д̃(b) the vector of all д̃k (b) corresponding to all

monomials of order k in f for 2 < k < d .
Then, we can overload the primitive Eval to compute admissible

functions f that consist of multivariate polynomials of degree d on

encrypted data and denote it Eval2:

4.2) Eval2 (mpk, ˜f ,C1, . . . ,Ct ): Takes the master public key, a spec-

ification
˜f = ( f , д̃(b)), composed of an admissible function

f : Mt → M and the tuple of monomials д̃(b). It also takes

t ciphertextsC1, . . . ,Ct and returns a ciphertextC . Eval2 is com-

posed of the following computation blocks:

• Mlt(C1, . . . ,Cd , д̃d (b)): Takes Ci = (ai , βi ) ∈ M × ˆC for i ∈ [d]
and the corresponding tuple of monomials д̃d (b) and outputs:

C =
∑

∅,S ⊆[d]

((∏
j ∈S

aj
)
⊗̂
[ [ ∏

l ∈[d]\S

bl
] ])
=

[ [ d∏
i=1

mi −

d∏
i=1

bi
] ]

=: α ∈ ˆC.

• Add(C1,C2): Same as before.

• cMlt(c,C ′): Same as before.

Like LabHE, the extension eLabHE also satisfies correctness, se-

mantic security and context-hiding. Their definitions are provided

in Appendix A.

Theorem 1. The eLabHE scheme is correct. ⋄

Theorem 2. The eLabHE scheme is semantically secure. ⋄

Theorem 3. The eLabHE scheme is context-hiding. ⋄

The proofs are given in Appendix A.

The LabHE extension we proposed can be used to evaluate

degree-d polynomials over encrypted data from every level-d ′ ho-
momorphic scheme, with d ′ < d . The idea is that, as long as the

requester knows in advance the polynomial that has to be evalu-

ated and the labels of the inputs, it can send offline to the cloud

the encryptions of the secrets that the cloud cannot compute, i.e.,[ [∏
i ∈T bi

] ]
, where d ′ ≤ |T | < d .

In what follows, we will compare the proposed extension of

LabHE to other secure methods of achieving the evaluation of a

degree-d polynomial on encrypted data.

Consider a party E that has to compute a product of d > 2

encrypted messagesm1, . . . ,md and was given the corresponding

ciphertexts C1, . . . ,Cd . Party D has the secret key and should only

obtain the resultm1 · . . . ·md . Without the extension we proposed

above, and using a level-1 encryption scheme, party E can only

compute encrypted products of two factors and then has to require

D to refresh the encryption, in the following way: E splits [[mi ·

mj − bi · bj ]] = α ∈ ˆC in a secret r and α ⊕̂[[−r ]] and sends the

latter to D; D decrypts and obtainsmi ·mj − r , assigns it a different
label τ and computes b ← F (K ,τ ), encrypts it and sends back

C = (a′ = mi ·mj − r − b, β
′ = [[b]]) ∈ M × ˆC; E reconstructs

(a′+r , β ′) and continues the computation. For a product ofd factors,

D has to perform d − 1 times the additive sharing and merging and

send to E d ciphertexts in
ˆC online, while D has to perform d

decryptions, d − 1 encryptions and send to E d − 1 ciphertexts in

M × ˆC online, and d − 1 plaintext multiplications offline.

If we use the extended version of LabHE we proposed in this

paper, E has to perform 2
d − 1 encrypted additions and 2

d − 2

plaintext-ciphertext multiplications and then sends to D only the

final result in
ˆC online, while D offline computes and sends 2

d−d−2

encryptions in
ˆC and performs one online decryption. In conclusion,

our extended version of LabHE replaces the online computations

from D and online communication by online computation at E,

offline computation at D and offline communication. However, one

can see that for large degrees d , this scheme loses its practicality,

because the required offline communication increases exponentially

with the degree d and the number of monomials.
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If we use the extension of LabHE proposed in [7], which uses

a level-(d − 1) homomorphic scheme, E has to perform 2
d − 1 en-

crypted additions, 2
d − 2 plaintext-ciphertext multiplications and

2
d − d − 2 encrypted multiplications and send to D the final result

in
ˆC online. However, the decryption that D is required to perform

is in the level-(d − 1) homomorphic scheme and has substantially

high complexity.

4 ENCRYPTED EXECUTION OF LQG
4.1 Encrypted LQG with public system model
If the state matrices A, B, C , the noise covariancesW , V , the costs
Q , R can be public, the setup sends them in plaintext to the cloud

controller. Then, the cloud can compute the Kalman gain L and

feedback gain K as in (5). The sub-systems encrypt with the pub-

lic key of the actuator their measurements and desired reference,

along with the initial state, and send them to the cloud controller.

Using only the additively homomorphic property of the encryption

scheme, the cloud can compute locally, at each time step, the en-

crypted control input uk as in (6). After this computation, the cloud

sends the encrypted control input to the actuator, which decrypts it.

E(uk ) = Add(cMlt(−K ,Add(E(x̂k ),E(−xr ))),E(ur ))

E(x̂k+1) = Add(cMlt(L,E(zk+1)), cMlt(I − LC, (6)

Add(cMlt(A,E(x̂k )), cMlt(B,E(uk ))))).

This case is linear in the encrypted data and AHE is sufficient to

ensure privacy of the measurements, states, reference and control

inputs. This setup where the state matrices are public is considered,

for example, in [12].

4.2 Encrypted LQG with private system model
As justified in the Introduction, in many situations it is important

to protect not only the signals (e.g., the states, measurements),

but also the system model. To this end, we propose a solution

that uses Labeled Homomorphic Encryption to achieve encrypted

multiplications and the private execution of LQG on encrypted

data. LabHE has a useful property called unbalanced efficiency that

can be observed from Section 3 and was described in [8], which

states that only one server is required to perform operations on

ciphertexts, while the decryptor performs computations only on

the plaintext messages. We will employ this property by having the

cloud perform the more complex operations and the actuator the

more efficient ones.

In Figure 3, the actuator holds the LQG query, denoted by fLQG ,
which describes the functionality of LQG. Offline, the actuator

generates a pair of master keys, as described in Section 3.2 and

distributes the master public key to the rest of the parties. The

setup and sub-systems generate their secret keys and send the

corresponding public keys to the actuator. Still offline, these parties

generate the labels corresponding to their data with respect to the

time stamp and the size of the data. As explained in Section 3.2,

the labels are crucial to achieving the encrypted multiplications.

Moreover, when generating them, it is important to make sure that

no two labels that will be encrypted with the same key are the same.

When the private data are times series, as in our problem, the labels

can be easily generated using the time steps and sizes corresponding

Figure 3: The setup and sub-systems send their encrypted
data to the cloud. The cloud has to run the LQG algorithmon
the privatemeasurements and the system’s privatematrices
and send the encrypted result to the actuator. The latter then
actuates the system with the decrypted inputs it received.

to each signal, with no other complex synchronization process

necessary between the actors. This is shown in Protocol 1.

Our protocols will consist of three phases: the offline phase,

in which the computations that are unrelated to the specific data

of the users are performed, the initialization phase, in which the

computations related to the constant parameters in the problem

are performed, and the online phase, in which computations on the

variables of the problem are performed. The initialization phase

can be offline, if the constant parameters are a priori known, and

online otherwise.

The setup sends the LabHE encryptions of the state matrices

and control gains to the cloud controller, once, before the execution

begins. The sub-systems send the encryptions of their initial states

and desired reference to the cloud controller, also once, at the onset

of the execution. Then, at every time step, the sub-systems encrypt

their measurements and send them to the cloud. After the cloud

performs the encrypted LQG query for one time step, it sends the

encrypted control input at the current time step to the actuator,

which decrypts it and inputs it to the system. In Protocol 2, we

describe how the encrypted LQG query is performed by the parties,

which involves the actuator sending an encryption of the processed

result back to the cloud such that the computation can continue in

the future time steps.

When the state matrices, feedback gains and initial condition

are private to the cloud and are stored in an encrypted form E(A),
E(B),E(C ),E(K ),E(L),E(x̂0), then the depth of the LQG program

in terms of multiplications is higher than two. However, if the cloud

computes the encryption of the coefficients

Γ1 :=(I − LC ) (A − BK ),

Γ2 :=(I − LC )BK , Γ3 := (I − LC )B,
(7)

then, the multiplication depth in terms of full LabHE ciphertexts

for the state estimate at iteration 1 is one and for the control input

is two. We assume for the moment that the cloud has access to

E(Γ1),E(Γ2),E(Γ3) and discuss how to achieve these products in

Section 5.

For the subsequent time steps, k ≥ 1, Protocol 2 ensures that the

actuator receives the control input at iteration k , corresponding
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to the program Pk . For the computation of the state estimation at

time k + 1, the cloud needs to have the full LabHE ciphertext of

E(x̂k ) ∈ M× ˆC, but as a result of the polynomial evaluations at time

step k , it has the AHE ciphertext [[x̂k ]]. To privately refresh the

encryption, which happens in lines 2–4 of Protocol 2, the cloud uses

a one-time pad rk , as described in Section 3.1.2, and sends [[x̂
′
k−rk ]]

to the actuator, which is possible since the scheme is additively

homomorphic. The actuator calls the decryption primitive and

sends back E(x̂k − rk ), from which the cloud retrieves E(x̂k ).

Protocol 1: Initialization of LQG

Input: Actuator: fLQG ; Sub-systems:x0,xr ,ur ; Setup:K ,L, Γ1, Γ2, Γ3.
Output: Actuator:u0; Cloud: E(x0), E(K ), E(L), E(Γ1), E(Γ2), E(Γ3),

[[ũr ]], [[x̂Γ]].
Offline:

1: Actuator: Generate (mpk,msk) ← Init(1λ ) and distribute mpk

to the others.

2: Sub-systems, Setup: Get (usk, upk) ← KeyGen(mpk) and send
upk to the actuator.

3: Sub-systems, Setup, Actuator: Allocate labels to the inputs of

function fLQG τ1, . . . ,τt as follows:
Sub-system i: for each measurement at time k ∈ {0, . . . ,T − 1},

zik of size pi , where i denotes a sub-system, generate the corre-

sponding labels τzik
= [kpi kpi + 1 . . . (k + 1)pi − 1]⊺;

then similarly for x i
0
,x ir ,u

i
r with the labels starting from where

the previous signals ended.

Setup: for matrix K ∈ Rm×n , set l = 0, generate τK =

l l+1 ... l+n−1
...

...
l+(m−1)n l+(m−1)n+1 ... l+mn−1


and update l = mn, then

follow the same steps for the rest of the matrices, starting from

l and updating it.

Actuator: follow the same steps as the sub-systems and setup,

and then generate similar labels for the state estimates x̂k start-

ing from the last l .
4: Sub-systems, Setup, Actuator: Perform the offline part of the

LabHE encryption primitive and decryption for the actuator.

5: Cloud: Generate randomness for Protocol 2.

6: Actuator: Form the program P = ( fLQG ,τ1, . . . ,τt ).
Initialization:

7: Setup: Perform the online part of LabHE encryption and send

to the cloud: E(Γ1),E(Γ2),E(Γ3),E(K ),E(L).
8: Sub-systems: Perform the online part of LabHE encryption and

send to the cloud: E(x0),E(xr ),E(ur ).
9: Cloud: Compute [[ũr ]]← Add(Mlt(E(K ),E(xr )),E(ur ));

[[x̂Γ]]← Add(Mlt(E(Γ2),E(xr )), Mlt(E(Γ3),E(ur ))).
Online:

10: Cloud: [[u0]]← Add(Mlt(E(−K ),E(x̂0)), [[ũr ]]).
11: Cloud: Send to the actuator [[u0]].
12: Actuator: Decrypt u0.

Notice that, technically, the encryptions [[x̂k ]] and [[uk ]] ob-
tained by the cloud are not just AHE encryptions of x̂k and uk , but
they also contain some products of secrets that will disappear in

the decryption process. In order to not burden the notation, we

omit this distinction in the protocols.

Protocol 2: Encrypted LQG at time step k

Input: Actuator: msk,mpk,Pk ; Cloud: E(zk ), E(x̂k−1), E(Γ1), E(L),
E(K ), [[ũr ]], [[x̂Γ]].

Output: Actuator: uk ; Cloud: E(x̂k ).
Online:

1: Cloud: Compute [[x̂k ]]← Add(Mlt(E(Γ1), E(x̂k−1)),Mlt(E(L),
E(zk )), [[x̂Γ]]).

2: Cloud: Send to the actuator [[x̂ ′k ]] ← Add([[x̂k ]], [[−rk ]]),

where rk
$

←Mn
is a random vector.

3: Actuator: Decrypt [[x̂k − rk ]] and send back a LabHE encryp-

tion of E(x̂k − rk ).
4: Cloud: E(x̂k ) ← Add(E(x̂k − rk ), rk ).
5: Cloud: [[uk ]]← Add(Mlt(E(−K ),E(x̂k )), [[ũr ]]).
6: Cloud: Send to the actuator [[uk ]] and output E(x̂k ).
7: Actuator: Decrypt uk .

Protocol 3: Encrypted LQG

Input: Actuator: fLQG ; Sub-systems: x0; Setup: Γ1, Γ2, Γ3,K ,L.
Output: Actuator: {uk }k=0, ...,T−1.

Offline + Initialization:

1: Sub-systems, Setup, Cloud and Actuator: Run Protocol 1.

Online:

2: for k=1,. . . ,T-1 do
3: Cloud and Actuator: Run Protocol 2.

4: Actuator: Input uk to the system.

5: Sub-systems: Measure zk+1, encrypt and send it to the cloud.

6: end for

As can be seen from Protocols 1 and 2, the actuator does not

need to know the system matrices in order to compute the program

and decrypt the results, but only their labels.

Informally, two-party privacywith respect to semi-honest parties

is achieved if neither party can infer anything about the private data

of the other party from processing its data and messages received,

other than what it can infer from its inputs and outputs. Multi-

party privacy is achieved if the same holds for a coalition of parties

agains the non-colluding parties. A formal definition is given in

Appendix B.

Theorem 4. Protocol 3 achieves privacy of the encrypted LQG
with respect to semi-honest parties. ⋄

Let us now consider possible coalitions between the parties

shown in Figure 3. The cloud and the actuator are not allowed

to collude, since the cloud has all the data in the system encrypted

with the actuator’s master key. Furthermore, all the sub-systems

and setup cannot be corrupted by an adversary at the same time.

Under these assumptions, the following theorem holds:

Theorem 5. Protocol 3 achieves privacy of the encrypted LQG
with respect to collusions. ⋄

The privacy of Protocol 3, composed of Protocol 1 andT − 1 runs
of Protocol 2 follows from the semantic security and context-hiding

property of LabHE and the perfect secrecy of the one-time pad. The

proofs are given in Appendix B.
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5 ENCRYPTED COMPUTATION OF LQG
COEFFICIENTS

The setup party does not need to be online for the computation

of LQG. For a given system, the encryptions of the system model

and gains E(A),E(B),E(C ),E(K ),E(L) might have been given of-

fline to the cloud or distributed among the sub-systems. In such

cases, the encryptions of Γ1, Γ2, Γ3 or other polynomial functions of

these matrices are not available, but they can be computed at the

beginning of the protocol by the cloud and actuator as the output

of a program evaluating a degree-3 polynomial, using eLabHE, and

stored as E(Γ1),E(Γ2),E(Γ3). Notice from (7) that:

Γ3 = B − LCB, Γ2 = Γ3K , Γ1 = A − LCA + Γ2. (8)

Then, the cloud need to compute two products of three encrypted

matrices and one product of two encrypted matrices.

Protocol 4: Initialization of LQG, extended version

Input: Actuator: fLQG , fΓ1 , fΓ2 , fΓ3 ; Sub-systems: x0,xr ,ur ; Setup:
A,B, C,K ,L.

Output: Actuator:u0; Cloud: E(x0), E(K ), E(L), E(Γ1), E(Γ2), E(Γ3),
[[ũr ]], [[x̂Γ]].
Offline:

1: Perform lines 1–4 from Protocol 1.

2: Actuator: Form the programs P = ( fLQG ,τ1, . . . ,τt ), PΓ3 =
( fΓ3 ,τB ,τC ,τL ,τK ), PΓ2 = ( fΓ2 ,τΓ3 ,τK ) and PΓ1 = ( fΓ1 ,τA,τC ,

τL ,τK ,τΓ3 ). Compute
˜fi ← Eval1 (mpk,msk, upk,PΓi ), for i =

1, 2, 3, corresponding to (8) and send it to the cloud. Create

labels τΓi for refreshing Γi .
3: Cloud: Generate randomness for Protocol 2 and Initialization.

Initialization:

4: Setup: Encrypt the matrices and send them to the cloud: E(A),
E(B),E(C ),E(K ),E(L).

5: Cloud: Compute [[Γ3]] ← Eval2 (mpk, ˜f3,E(B),E(C ), E(L)),
share it and send it to the actuator a share [[Γ′

3
]].

6: Actuator: Decrypt Γ′
3
, allocate it the label τΓ3 and send the

LabHE encryption to the cloud: E(Γ′
3
).

7: Cloud: Reconstruct and obtain E(Γ3).
8: Cloud: Compute [[Γ2]]← Eval2 (mpk, ˜f2, E(Γ3), E(K )), [[Γ1]]←

Eval2 (mpk, ˜f1,E(A),E(C ),E(L),E(K ),E(Γ3)), share them and

send to the actuator the shares [[Γ′
2
]], [[Γ′

1
]].

9: Actuator: Decrypt Γi , allocate it the label τΓi and send the

LabHE encryptions to the cloud: E(Γ′i ), for i = 1,2.

10: Cloud: Reconstruct and obtain E(Γ1),E(Γ2).
11: The rest follows as in lines 7–12 in Protocol 1.

The privacy of Protocol 4 follows from the context-hiding and

semantic security of the eLabHE scheme described in Section 3.3

and perfect privacy of the one-time pads used.

Furthermore, we can modify Protocol 2 such that the cloud sends

the control input to the actuator before requesting a refreshed

encryption of the state estimate. Specifically, the cloud can compute

first, in an encrypted fashion:

uk = −KΓ1x̂k−1 − KLzk − K (Γ2xr + Γ3ur ) + Kxr + ur ,

and then follow with computing the state estimate x̂k . Such a

change is recommended when timing is crucial, because it allows

the actuator to send the control input to the plant faster, at the initial

expense of four extra encryptedmultiplication E(KΓ1), (KΓ2), (KΓ3),
E(KL) that can be performed in Protocol 4.

6 NUMERICAL RESULTS
6.1 Implementation details
The message space for AHE is discrete and the messages need to be

represented on bits. Hence, we need to quantize the signals and their

coefficients. We adopt a fixed-point number representation, where

a value is represented as a signed integer in the two’s complement

format, with one sign bit, li integer bits and lf fractional bits.

Most public space AHE schemes have the ring of integers ZN
as message space, where N is an RSA modulus. To prevent brute

force factorization, N is required to be at least 1024 bits. Hence, the

message space is large enough to represent messages with precision

of 128 bits, which is the standard quadruple precision. In this case,

the quantization and round-off errors can be considered negligible.

Under stability conditions of the quantized matrices, the stability

of quantized Kalman Filter can be proved [30]. The quantization

effects of encryption over control performance are analyzed in [1,

21, 27, 28].

We assume the channels are reliable and the packets cannot be

tampered with. The memory of the parties is finite, so we cannot

consider that Protocol 3 runs for an infinite time. In the offline

phase, the labels are generated for a fixed number of time steps T .
Once these T time steps elapse, the parties have to generate new

labels for the signals (not for the state matrices and gains, if those

are not desired to be changed). This can be done in parallel with

the computations that take place in the first T time steps.

6.2 Case study
We illustrate the performance of the proposed encrypted LQG con-

troller on the problem of temperature regulation in a smart building,

where a central cloud controller computes the control inputs in a

private manner, based on encrypted data from sensors, so that sen-

sitive information like the occupancy of the rooms is not revealed.

We consider the data from the HAMLab ISE model in [33], avail-

able at [32], which models the building as one zone. We use a

modified model that considers the building to be split into two

zones, which we assume have two different owners, who want

different set points for the temperature in the zones, as well as

privacy with respect to their presence there and desired settings.

The state consists of the temperatures for each of the two zones

(indoors air, floor, separating wall, internal facade and external fa-

cade temperature), the control input represents the heating/cooling

for the two zones and the disturbances consist of the outdoors air

temperature, the occupancy generated heat and the heat caused by

the sun through the windows for the two zones. The measurements

are considered to be the same as the states. The system has state

dimension n = 10 and control input dimensionm = 2. We simulate

the results for a sampling time of 420 seconds. Assume the states

corresponding to the indoors air temperature for the two zones

have to be steered to 15
◦
C and 25

◦
C during the day (considered

between 6 am to 8 pm), and to 10
◦
C and 20

◦
C during the night.

Each zone has a local device that generates secret keys for en-

crypting the labels. The matrices corresponding to the state model
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and the corresponding Kalman and control gains have been en-

crypted with labels generated by a different secret key by another

machine in the building, called setup. The actuator generates a pair

of master key and secret key and sends the master key to the three

parties described so far, which encrypt their secret keys with the

master key and send them to the actuator. The local devices for the

two zones send the corresponding encrypted measurements and

encrypted references to the cloud controller. If the cloud readily

receives all the coefficients encrypted from the Setup, it executes

Protocol 1, and otherwise, it executes Protocol 4 to obtain full

LabHE encryptions of the gains and rest of the coefficients. The

cloud then computes the estimate of the current state, refreshes the

encryption with the help of the actuator, then computes the control

input and sends it to the actuator, as described in Protocol 2.

We instantiated the AHE scheme with the Paillier scheme [25],

for which we chose a modulus N of 1024 bits. The pseudorandom

generator is chosen to be the SHA-3 hash function with 224 output

bits. The protocols were run on a standard MacBook Pro laptop

with a 2.2 GHz Intel Core i7 and 16 GB of RAM.

Figure 4 shows the performance of estimation and tracking for

a fixed-point representation with li = 24 integer bits and lf = 24

fractional bits, where r represents the set point, T iin is the true

temperature in zone i and T̂ iin is the temperature estimate.

For a simulation of T = 100 time steps, corresponding roughly

to 12 hours with the chosen sampling period, the offline execution

times corresponding to the Protocol 1 and 4 and online execution

times are shown in Table 1. The online time corresponding to

computing the estimate and control input in a time step are under

0.3 seconds for all actors. Since the sampling times for buildings

are usually large, (other examples for the same HAMLab ISE model

include 300 seconds in [18] and 444 seconds in [11]), the encrypted

computations finish much before a new measurement is acquired.

The execution times for varying system dimensions, considering

one agent with all the states and control inputs for ease of com-

parison, are presented in Figure 5 and Figure 6. Figure 5 compares

which actor performs the most computational intense task for each

6 10 14 18 22 2 6

time (h)

0

5

10

15

20

s
ta

te

6 10 14 18 22 2 6

time (h)

10

15

20

25

30

35

s
ta

te

State vs. estimated state

Figure 4: Performance of the estimation and tracking for en-
crypted LQG implemented with li = 24, lf = 24.

Time (s) Cloud Actuator Agent1,2 Setup

Offline P. 1 0.228 5.721 1.138 1.239

Initialization P. 1 0.156 0 4e-5 0.0024

Offline P. 4 0.226 33.32 1.131 0.744

Initialization P. 4 21.417 0.603 4e-5 0.0012

Online for one step 0.219 0.0029 4e-5 0

Table 1: Average times for the encrypted LQG computation
for li = 24, lf = 24, Nσ = 1024, 224-bit secrets, 100 time steps.

phase of Protocol 3, while Figure 6 shows howmuch time each actor

spends on each phase using a logarithmic scale for visualization

purposes. In order to evaluate the time performance of the proposed

protocols, one should look at the online times for the sub-systems

and actuator, since these are the most resource-sensitive actors. We

observe that even for larger systems of 100 states and 20 inputs,

the online time for one iteration for the agent is 0.0005 seconds

and 0.27580 seconds for the actuator, which are competitive times.

Notice that in the initialization phase and in the online iterations,

the cloud has the most computational requirements, which is as

desired, since the cloud is a powerful server, and it has the necessary

resources to improve the times. On the other hand, the rest of the

parties are expected to perform more offline computations than

the cloud, which correspond to the label generation and LabHE

encryption process. The actuator is not required to do anything in

the initialization phase corresponding to Protocol 1 and the setup

does not play a role in the online iterations.

For larger system dimensions (n ≥ 50), the offline and initializa-

tion phases become computationally and memory intensive for the

execution of Protocol 4, due to computing Γ1, Γ2, Γ3 as products of
encrypted matrices. As described in Section 3.3, the actuator is re-

quired to compute the encryptions of products of the monomials in

the polynomial evaluations and transmit them to the cloud, which

can take 4 hours on a 2.2 GHz Intel Core i7 processor. However, the

online execution times remain the same as in Figures 5 and 6.
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Figure 5: Execution times for Protocol 3 for different system
dimensions, with li = 24, lf = 24, Nσ = 1024, 224-bit secrets,
and 100 time steps.
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Figure 6: Execution times on a logarithmic scale for Proto-
col 3 for different system dimensions, with li = 24, lf = 24,
Nσ = 1024, 224-bit secrets, and 100 time steps.

7 FUTUREWORK
Computing the Kalman and feedback gains when the system matri-

ces are encrypted involves multiplications and divisions between

encrypted data, aswell as comparisons andmatrix inversions, which

have high computational complexity. In Section 4, we assumed that

the cloud is given the encryptions of the feedback gains and state

matrices by a different party, which knows the system parameters.

As those parameters do not depend on the measurements, they can

be stored and the gains precomputed offline. If the existence of such

a party cannot be guaranteed, we can use encrypted communication

between the cloud and a second server, such that the cloud obtains

the encrypted gains through secure multiparty computation. We

will address the fully encrypted design of LQG in future work.
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A FURTHER DETAILS ON LabHE

For two random variables X ,Y over a finite set U , the statistical

distance is defined as follows:

SD[X ,Y ] := 1/2
∑
u ∈U

���Pr[X = u] − Pr[Y = u]
���.

A function negl(λ) is said to be negligible if it vanishes faster than
the inverse of any polynomial in λ. A simulator Sim is a probabilistic

polynomial-time (PPT) algorithm.

Let fid : M → M be the identity function and τ ∈ {0, 1}∗

be a label. Denote the identity program for input label τ by Iτ =

( fid ,τ ). Any labeled program P = ( f ,τ1, . . . ,τn ) (as in Defini-

tion 1) can be expressed as the composition of n identity programs

P = f (Iτ1 , . . . ,Iτn ).
The definitions of correctness, semantic security, circuit privacy

and context-hiding are taken from [4, 7].

Definition 3. (Correctness) A multi-user Labeled Homomorphic
Encryption scheme correctly evaluates a family of functions F if for

all honestly generated keys (mpk,msk)
$

← Init(1λ ), all user keys

(upk
k
, usk

k
)

$

← KeyGen(mpk), k ∈ [l], for all f ∈ F , all labels
τ1, . . . ,τt ∈ L, messagesm1, . . . ,mt ∈ M, anyCi ← E(mpk, uskji ,

τi ,mi ) and д̃ ← ( f ,Eval1 (mpk, msk, upk, ( f ,τ1, . . . ,τt ))), ∀i ∈
[t], ji ∈ [l]:

Pr

[
D(msk,upk,P,Eval2 (mpk, д̃,C1, . . . ,Ct )) = f (m1, . . . ,mt )

]
>

> 1 − negl(λ),

where the probability is taken over the random choices. ⋄

Proof. (Theorem 1) The proof can be easily extended from

the proof of correctness of LabHE. The correctness of the eLabHE

scheme holds as long as f (m1, . . . ,mt ) ∈ M and

∏
i ∈[d] bi ∈ M,

where d is the degree of f . Consider ciphertexts produced by the E

primitive. For every (τ ,m) ∈ L×M, the encryption primitive yields

E(mpk, upk,τ ,m) → C = (a, β ), where a =m − fid (F (usk,τ )) and
it follows by the correctness of AHE thatm ← D(msk,Iτ ,C ).

Consider ciphertexts produced by Eval2. For i ∈ [t], consider

any t labeled programs Pi =
(
fi ,τ

(i )
1
, . . . ,τ

(i )
ti

)
and t ciphertextsCi

such thatmi ← D(msk,usk,Pi ,Ci ). Then, for any f ∈ F , we want

to evaluate f (P1, . . . ,Pt ) =: P
∗
on ciphertextsC1, . . . ,Ct . For that

we run Eval1 and obtain д̃ ←
(
f ,Eval1

(
mpk,msk, upk,

{
τ
(i j )
1
, . . . ,

τ
(i j )
tij

}
j ∈[t ]

))
. Denote the resulting ciphertext asC ← Eval2 (mpk, д̃,

C1, . . . ,Ct ). By construction, a ciphertextCi is either (mi−bi , [[bi ]])

or [[mi − bi ]], with bi ← fi
(
F
(
usk,τ

(i )
1

)
, . . . , F

(
usk,τ

(i )
ti

))
, ob-

tained from Eval2 applied to the inputs of Pi and the corresponding
˜fi ←

(
fi ,Eval1 (mpk, msk, upk,τ

(i )
1
, . . . ,τ

(i )
ti )
)
, i ∈ [t]. It is clear

that д̃ will contain
˜fi for i ∈ [t]. After the evaluation of f , we ob-

tain the ciphertext C that is either ( f (m1, . . . ,mt ) − f (b1, . . . ,bt ),
[[f (b1, . . . ,bt )]]) or [[f (m1, . . . ,mt ) − f (b1, . . . ,bt )]]. Then, by

construction of D, correctness of AHE and usingP∗ =
(
f1
(
I
τ (1)
1

, . . . ,

I
τ (1)
t
1

)
, . . . , ft

(
I
τ (t )
1

, . . . ,I
τ (t )
tt

))
, we obtain the correctness of the

eLabHE scheme, i.e., D(msk, usk,P∗,C ) ← f
(
m1, . . . ,mt

)
. □

The definition of semantic security [15], [14, Ch. 5] is adapted

for labeled homomorphic encryption schemes in [4]:

Definition 4. (Semantic security) Let eLabHE = (Init,KeyGen,
E,Eval1,Eval2,D) be a multi-user labeled homomorphic encryption
scheme and A be a PPT adversary. Consider the following experi-
ment whereA is given access to an oracle E(mpk, usk, ·, ·), for usk =
(usk1, . . . , uskl) that on input a pair (τ ,m) outputs E(mpk, usk,τ ,m):

Exp
eLabHE,A (λ) : b

$

← {0, 1}; (mpk,msk)
$

← Init(1λ )

(upk, usk)
$

← KeyGen(mpk)

(m0,τ
∗
0
,m1,τ

∗
1
)

$

← AE(mpk,usk, ·, ·) (mpk, upk)

C
$

← E(mpk, usk,τ ∗b ,mb )

b ′ ← AE(mpk,usk, ·, ·) (C )

If b ′ = b return 1. Else, return 0.

We say A is a legitimate adversary if it queries the encryption oracle
on distinct labels (each label τ is never queried more than once) and
never on the two challenge labels τ ∗

0
,τ ∗
1
. We define the adversary’s

advantage asAdv
eLabHE,A (λ) = Pr[Exp

eLabHE,A (λ) = 1]− 1

2
. Then,

we say that eLabHE has semantic security if for any PPT legitimate
algorithm A, the following holds Adv

eLabHE,A (λ) = negl(λ). ⋄

Proof. (Theorem 2) The scheme eLabHE has the same encryp-

tion and decryption primitives as LabHE and identically looking

ciphertexts. Hence, the proof follows the semantic security of the

LabHE scheme, which depends on the semantic security of the

underlying AHE scheme and on the pseudorandomness of F . □

Semantic security is equivalent to ciphertext indistinguishabil-

ity [15], [14, Ch. 4], so we can write it as:

SD[E(mpk, usk,τ ,m), Sim(1λ ,mpk, usk)] ≤ negl(λ),

where Sim is a PPT simulator that simply outputs a LabHE (or AHE)

encryption of zeros. The same can be written for the secret sharing

scheme which has perfect secrecy, with Sim outputting a random

value sampled fromM.

Definition 5. (Context-hiding) A multi-user labeled homomor-
phic encryption scheme satisfies context-hiding for a family of func-
tions F if there exists a PPT simulator Sim and a negligible function
negl(λ) such that the following holds: for any λ ∈ N, any pair of

master keys mpk,msk

$

← Init(1λ ), any l user keys (upk
k
, usk

k
)

$

←

KeyGen(mpk), k ∈ [l], any function f ∈ F with t inputs, any tuple
of messagesm1, . . . ,mt ∈ M, labels τ1, . . . ,τt ∈ L, and ciphertexts

Ci
$

← E(mpk, uskji , τi ,mi ), i ∈ [t] and ji ∈ [l]:

SD[Eval2 (mpk, ˜f ,C1, . . . ,Ct ), Sim(1λ ,msk, upk,P,m)] ≤

≤ negl(λ),

where we defined P = ( f ,τ1, . . . ,τt ),m = f (m1, . . . ,mt ) and ˜f =
( f ,Eval1 (mpk,msk, upk,P)). ⋄

Context-hiding describes the property that a party that decrypts

a ciphertext C asm ← D(msk, upk,P,C ), with P = ( f ,τ1, . . . ,τt ),
does not find out anything about the inputsm′

1
, . . . ,m′t , except for

the fact that m = f (m′
1
, . . . , m′t ). In order to prove that eLabHE
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is context-hiding, we need to make use of the concept of circuit

privacy.

For any admissible linear function f , we can abstract the evalua-

tion primitives in AHE as
ˆ

Eval( ˆpk, f ,C1, . . . ,Ct ). We will use this

notation when defining circuit privacy:

Definition 6. (Circuit privacy) A homomorphic encryption
scheme is circuit private for a family of circuits F if there exists
a PPT simulator Sim and a negligible function negl(λ) such that the

following holds. For any λ, any pair of keys ( ˆpk, ˆsk)
$

← ˆ
KeyGen(1λ ),

any circuit f ∈ F , any tuple of messages m1, . . . ,mt ∈ M and
m = f (m1, . . . ,mt ) and ciphertexts C1, . . . ,Ct satisfying ∀i ∈ [t] :

Ci
$

← ˆ
E( ˆpk,mi ), then:

SD

[
ˆ

Eval( ˆpk, f ,C1, . . . ,Ct ), ˆ
Sim(1λ , ˆpk,m)

]
≤ negl(λ). ⋄

The difference between circuit privacy and context-hiding is that

in context-hiding, the decryptor has access to the function, whereas

in circuit privacy, it does not.

Proof. (Theorem 3) The proof relies on the circuit privacy of the

underlying AHE scheme. Let
ˆ

Sim be the simulator for the circuit

privacy of AHE. A simulator Sim(1λ , msk, upk, ( f ,τ1, . . . ,τt ),m)

computes for upk = (upk
1
, . . . , upkl ), uskj ←

ˆ
D(msk, upkj ),

j ∈ [l], and bi ← F (uskji ,τi ), i ∈ [t]. Then, it computes b ←
f (b1, . . . ,bt ). Notice that Sim has the inputs necessary to com-

pute
˜f . If f is a degree-1 polynomial, then Sim outputs C = (m −

b, ˆ
Sim(1λ ,mpk,b)). Else, if f is degree-d , with d ≥ 2, Sim outputs

C = ˆ
Sim(1λ ,mpk,m−b). Using the circuit privacy of AHE, the out-

puts of Sim are distributed identically to the corresponding outputs

produced by Eval2. □

B PRIVACY OF PROTOCOL 3
Definition 7. (Two-party privacy w.r.t. semi-honest behavior [14,

Ch. 7]) Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functional-
ity, and f1 (x1,x2), f2 (x1,x2) denote the first and second components
of f (x1,x2), for any inputs x1,x2 ∈ {0, 1}∗. Let Π be a two-party
protocol for computing f . The view of the i-th party (i = 1, 2) dur-
ing an execution of Π on the inputs (x1,x2), denoted V Π

i (x1,x2), is
(xi , coins,m1, . . . ,mt ), with the i’th party’s internal coin tosses, and
mj represents the j-th message it has received. For a deterministic
functionality f , we say that Π privately computes f if there exist
probabilistic polynomial-time algorithms, called simulators, denoted
Simi , such that:

SD[{Simi (1
λ ,xi , fi (x1,x2))}x1,2∈{0,1}∗ , {V

Π
i (x1,x2)}x1,2∈{0,1}∗ ] ≤

≤ negl(λ). ⋄

The definition of multi-party privacy can be obtained from Defi-

nition 7 by replacing one party with a coalition of parties and the

other party with the rest of non-colluding parties.

Proof. (Theorem 4) We can build simulators for Protocol 3 from

the simulators for semantic security, context hiding and perfect

privacy and contrast them to the views of the parties, as in Defini-

tion 7.

The view of the actuator is:

VA ( fLQG ) =
(
fLQG , upk, {ui }i ∈0∪[T−1], {x̂i − ri }i ∈[T−1], coins

)
.

We build a simulator SimA, that on inputs
(
1
λ , fLQR , {ui }i ∈0∪[T−1]

)
runs (mpk,msk)← Init(1λ ), (ũsk, ũpk) ← KeyGen(mpk), samples

random values {̃ri }i ∈[T−1] ∈ M
n
and then outputs:(

fLQG , ũpk, {ui }i ∈0∪[T−1], {̃ri }i ∈[T−1],Icoins
)
.

The indistinguishability between VA ( fLQG ) and SimA
(
1
λ , fLQR ,

{ui }i ∈0∪[T−1]
)
follows from the context-hiding property of LabHE

and perfect secrecy of the one-time pad.

The cloud’s view is: VC (∅) =(
E(x0),E(xr ),E(ur ),E(Ω), {E(zi )}i ∈[T ], {E(x̂i )}i ∈[T−1], coins

)
,

where Ω areK ,L, Γ1, Γ2, Γ3. We build a simulator SimC that on input

(1λ ) runs KeyGen(1λ ), generates randomness for the shares, and

creates encryptions of random values for all model parameters and

signals received from the sub-systems and actuators, and outputs:(I
E(x0),IE(xr ),IE(ur ),IE(Ω), {IE(zi )}i ∈[T ], {Ẽ(x̂i )}i ∈[T−1],Icoins

)
.

The indistinguishability betweenVC (∅) and SimA (1
λ ) follows from

the semantic security of LabHE.

The setup’s view is VS (K ,L, Γ1, Γ2, Γ3) = (K ,L, Γ1, Γ2, Γ3). We

build a simulator SimS that simply outputs its inputs (K ,L, Γ1, Γ2, Γ3),
which is trivially indistinguishable from VS (K ,L, Γ1, Γ2, Γ3). Simi-

larly, the view of each sub-systems is VS i (x
i
0
,x ir ,u

i
r ) = (x i

0
,x ir ,u

i
r ).

We then build simulators SimS i that simply output their inputs

(x i
0
,x ir ,u

i
r ), being trivially indistinguishable from VS i (x

i
0
,x ir ,u

i
r ).

The correctness of Protocol 3 follows from the correctness of

the LQG algorithm and of the LabHE scheme. The proof is now

complete. □

Proof. (Theorem 5) The proof of multi-party privacy uses the

fact that neither the cloud nor the actuator can be in a coalition

that has all the private data in the system and they cannot extract

any information from the communication between themselves: the

cloud receives encrypted data from the actuator, and does not have

access to the key, and the actuator receives only random shares

from the cloud.

A coalition between the cloud and the setup reduces to the case

presented in Section 4.1. Consider now a coalition between the

cloud, the setup and N̄ sub-systems, where 0 ≤ N̄ < N . Because

the data of the non-colluding sub-systems is encrypted with a

semantically secure encryption scheme, and the coalition has access

neither to the master key nor to the secret key of the non-colluding

sub-systems, the coalitions cannot infer anything new about the

private data of the non-colluding parties.

Similarly, a coalition between the actuator and the setup reduces

to the case presented in Section 4.1. Consider now a coalition be-

tween the actuator, the setup and N̄ sub-systems, where 0 ≤ N̄ < N .

The outputs of the actuator consist inuk = −Kx̂k +Kxr +ur , where
K is known because of the collusion with the setup and some entries

in xr and ur are known from the collusion with some sub-systems.

However, because the communication with the cloud is additively

blinded by large random numbers (the secrets from the shares),

the actuator cannot infer anything more about x̂k than what it can

infer solely from the colluding parties’ data.

With this observations, one can construct simulators on the

inputs of coalitions like in the proof of Theorem 4. □
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