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Abstract— The least squares problem with `1-regularized re-
gressors, called Lasso, is a widely used approach in optimization
problems where sparsity of the regressors is desired. As moti-
vation, we investigate a sparse data predictive control problem,
run at a cloud service to control a system with unknown model,
using `1-regularization to limit the behavior complexity. The
collected input-output data is privacy-sensitive, hence, we design
a privacy-preserving solution using homomorphically encrypted
data. The main challenges are the non-smoothness of the `1-
norm, which is difficult to evaluate on encrypted data, as well as
the iterative nature of the Lasso problem. We use a distributed
ADMM formulation that enables us to exchange substan-
tial local computation for little communication between a few
servers. We give an encrypted multi-party protocol for solving
the distributed Lasso problem, by approximating the non-
smooth part with a polynomial, evaluating it on encrypted
data, and using a more cost effective distributed bootstrapping
operation. For the example of data predictive control, we prefer
a heterogeneous splitting of the data for better convergence and
give an encrypted protocol for one powerful server and a few
less powerful devices, added for security reasons. Finally, we
provide numerical results for our proposed solutions.

I. INTRODUCTION

Sparsity and compressed sensing have been widely used in
signal processing, machine learning and control applications,
especially in big-data regimes and noisy environments. In
high-dimensional problems, it is likely that only a subset of
features affects the observations. Pursuing sparse representa-
tions reduces the model complexity and prevents overfitting.

The celebrated Lasso algorithm (least absolute shrinkage
and selection operator) accounts for both sparsity and noisy
data via `1-regularization. Lasso has been used in signal
reconstruction for medical imaging, wireless communication
and tracking; portfolio optimization; text analysis [1], [2].
With the recent global availability and development of cloud
services, outsourcing the computations is a cost effective
solution when the data owner/querier lacks the computational
resources or expertise to locally perform them. Given the
privacy-sensitive nature of the data on which such problems
are computed, and how it can be used to profile users or
mount attacks on critical infrastructure, the computations
should not be performed in the clear at the cloud service.

A. Contributions

To deal with the privacy issues we draw on cryptographic
approaches, specifically, on homomorphic encryption, which
enables polynomial computations at the cloud over the
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client’s encrypted data. However, encrypted Lasso brings
new challenges: evaluating non-smooth functions on cipher-
texts, as well as continuing computations over multiple iter-
ations and time steps, which require ciphertext refreshing.

A conventional observation is that distributing a large opti-
mization problem to multiple servers improves the execution
time by parallelizing smaller subproblems. Apart from this,
we note that distributing the computation allows a stream-
lined execution of encrypted iterations. In particular, using
multiple servers allows us to perform a refresh operation at
a substantially reduced cost compared to performing it only
at one server. This cheaper refresh operation enables us to
continue the encrypted computations over multiple iterations,
as well as to use a high degree polynomial to approximate
the gradient of the `1-norm. Specifically, we propose:
• an efficient distributed encrypted solution to Lasso

problems using ADMM, offering computational privacy
of all the data, including intermediate results;

• an optimized implementation of the above protocol
using an efficient Chebyshev series evaluation for poly-
nomial approximations and reducing the number of
ciphertext levels and operations.

We apply our cloud-based sparsity framework to the
problem of data-based predictive control [3]–[6]. Our goal
is to control an unknown system using only the privacy-
sensitive (noisy) input-output data. The idea of data-driven
control is to replace the state representation by a data-
based representation which only uses the system trajectories,
bypassing the need for system identification. In the noisy data
case, inspired by [4], [6], we reformulate the data predictive
control as a lasso problem. For this use-case, we propose:
• a distributed encrypted solution for `1-regularized data

predictive control, using an optimized implementation.
For better convergence, we customize this solution to split the
problem heterogeneously between a powerful server and a
few less powerful machines, while still offering data privacy.

B. Comparison to related work

Our usage of distributed ADMM substantially differs from
previous works in private distributed optimization [7]–[9]: i)
we start with centralized rather than already distributed data;
ii) we can split the computations heterogeneously between
servers; iii) the data at each server is not in the clear, which
complicates the computations; iv) the servers do not learn
any of the data, including intermediate iterates and results;
v) the `1-regularization term is non-smooth and has nonlinear
gradient, leading to updates of the global primal variable that
are incompatible with the mentioned ADMM works.



In [10], the authors solve a Lasso problem with distributed
ADMM using secret shares and threshold additively homo-
morphic encryption. In contrast to their work, the data is not
distributed in the clear to the computing servers, meaning we
have less flexibility with respect to the local computations.
Another difference is that the tools they use require them
to communicate for every multiplication and comparison
operations (the latter requiring a number of rounds dependent
on the number of bits in the messages). In our case, the
servers only send two messages per iteration and the method
we employ also allows us to batch vectors and perform
operations in parallel for all elements of a vector.

In [11], [12], the authors propose encrypted federated
training and evaluation, using stochastic gradient descent.
While we inspired our solution from their multi-party fully
homomorphic encryption tool, their setup is different from
ours: the data is either distributed in cleartext locally at the
parties or other data providers perform the preprocessing;
and the computations are different, leading to different
strategies and optimizations, e.g., [11] uses a combination
of distributed and centralized bootstrapping operations.

Encrypted control, surveyed in [13], offers strong privacy
guarantees even when the controller is located on an un-
trusted platform. In the case of controlling a system with
known model and linear controller parameters, [14] have
shown how to perform the computations at subsequent time
steps without bootstrapping or ciphertext reset. In contrast,
we deal with both nonlinearities and unknown model matri-
ces, which prevent the application of their methods.

Our previous work [15], [16] provides confidentiality for a
different formulation of a data predictive control problem.
The Lasso formulation in our current work does not have a
closed-form solution as before, which complicates the com-
putations on encrypted data. We also use a different archi-
tecture at the cloud, in order to completely remove the client
involvement during the computation of the control input.

In [17], the authors propose multiple controllers in parallel
that perform asynchronous local bootstrapping, to ensure that
at least one has an input ready for each time step. In contrast,
we prefer multiple servers to perform a distributed bootstrap-
ping to reduce the time needed to refresh the ciphertexts.

II. PROBLEM FORMULATION

For a covariate matrix A ∈ Rm×n, a vector of outcomes
b ∈ Rm, the variable x ∈ Rn and a penalty parameter λ > 0,
the Lasso problem in its Lagrangian form is given by:

min
x

1

2
||Ax− b||22+λ||x||1. (1)

For dependent covariates, there is no closed-form so-
lution to (1). But, for instance, Lasso problems can be
solved using the Alternating Direction Method of Multipliers
(ADMM) [18], [2, Ch. 5]. Splitting the objective function in
the ADMM way, we get:

min
x,z

1

2
||Ax− b||22+λ||z||1

s.t. x− z = 0.
(2)

Let Sα(x) = (x − α1)+ − (−x − α1)+ denote the soft
thresholding operator. The ADMM algorithm for (2) is:

xk+1 = (AᵀA + ρI)
−1 (

Aᵀb + ρ(zk −wk)
)

zk+1 = Sλ/ρ(x
k+1 + wk)

wk+1 = wk + xk+1 − zk+1.

(3)

While for general optimization problems, ADMM might
converge slowly, for Lasso it is known to have a fast
convergence of a few (tens of) iterations for a large range of
the parameter ρ > 0 [18]. We also note that in noisy control
problems, like the one we investigate in Section V, a very
high precision of the optimal result is not required.

Goals and privacy requirements. A client outsources
problem (1) to a cloud service that has to compute the
optimal solution based on the data from the client.

We consider the cloud service to be semi-honest, meaning
it does not deviate from the client’s specifications, but can
process the data it receives to extract private information for
its own profit. The cloud service can be a conglomerate of K
servers, possibly belonging to different organizations, offer-
ing the guarantee that not all K servers collude.

Under this adversarial model, we require client data con-
fidentiality, i.e., an adversary corrupting at most K − 1 of
the servers should not be able to infer anything about the
client’s inputs and outputs, which consist of the values of
the matrix A and the vector b, any intermediate values, and
solution x∗. The penalty λ and parameter ρ can be chosen
by the cloud service or the client, but are public.

III. PRELIMINARIES

A. Homomorphic Encryption (HE)

A HE scheme is called leveled homomorphic if it supports
the encrypted evaluation of a finite degree polynomial and
fully homomorphic if it supports the encrypted evaluation of
arbitrary polynomials. In most leveled HE schemes, opera-
tions introduce some noise; this noise accumulates and if it
exceeds a threshold, decryption yields an incorrect result. We
say that a fresh ciphertext is on level L and a multiplication
consumes a level. A ciphertext on level 0 does not accept any
more multiplications (due to overflowing noise). Leveled HE
schemes can be turned into fully HE by enabling a bootstrap-
ping operation, which refreshes the ciphertext and allows
further operations while guaranteeing correct decryption.

If done locally at one server (no access to the private key),
bootstrapping is a very expensive operation, consuming ∼10
levels; Apart from the computationally intensive refreshing
procedure, all the prior operations are impacted, since ci-
phertexts are required to have more levels, leading to huge
ciphertext sizes. Instead of performing bootstrapping locally,
a server can ask the client to refresh a ciphertext on level
0. However, this implies more computation, communication
and availability from the client, which is often prohibitive.
An alternative that we prefer is to use multiple servers for
efficient computation and refreshing. Distributed bootstrap-
ping trades substantial computation power for one round of
communication, as described below.



In [11], [19] a multi-party leveled HE scheme is described,
where a number of servers can carry out the homomorphic
computations locally and only interact for bootstrapping.
The private key is additively secret shared between the
servers, meaning that no proper subset of the servers can
decrypt. Distributed bootstrapping requires each server to
use its local secret share of the key to perform a partial
decryption, mask this result and send it to the other servers.
Summing up the partial decryptions results in a refreshed
ciphertext with the desired number of levels that can be
correctly decrypted to the original message. The distributed
bootstrapping consumes ∼3 levels.

With this HE scheme, we can encrypt multiple scalars
in a ciphertext and perform single instruction multiple data
(SIMD) operations on ciphertexts: addition, element-wise
multiplication and data slot rotations. This brings major
computation and memory improvements. We use + and �
for SIMD addition and multiplication and ρ(x, i) to denote
the row vector x rotated to the left by i positions (i < 0
rotates to the right). We denote by Ev0(x) the encryption of
the vector x followed by trailing zeros and by Ev∗(x) the
encryption of the vector x followed by junk elements.

A HE scheme has a computational security parameter κ if
all known attacks against the scheme take 2κ bit operations.
In practice, at least 128 bits of security are preferred [20].

B. Polynomial approximation

Since HE can evaluate polynomials on encrypted values,
we have to polynomially approximate non-polynomial func-
tions. We choose to work with the Chebyshev series polyno-
mial interpolation, since it is a near-minimax approximation
of a continuous function on the interval [−1, 1] [21].

However, polynomial approximation is not a panacea: for
non-smooth functions, it gives a small error only on relatively
small intervals and using high degree polynomials. We
choose to use this method, rather than other more costly
encrypted computation tools that can exactly evaluate non-
smooth functions, knowing that we deal with noisy systems
where small approximation errors are absorbed by noise.

IV. ENCRYPTED DISTRIBUTED LASSO

In our setup, the client encrypts its data A,b and splits its
private key between a number of servers (each server only
receives a share of the key). The servers are responsible to
compute and return the solution of problem (2) to the client.

A. Challenge: Evaluating non-polynomial functions

In the steps (3) of the ADMM algorithm, the soft thresh-
olding function is non-polynomial, yet we need to evaluate it
on encrypted data when computing zk+1. We deal with this
challenge by approximating it using a polynomial on a fixed
interval via the Chebyshev series. The approximation error
depends on the polynomial degree and the input interval.

Remark 1: The “stability” of the ADMM iterations al-
lows xk+1+wk to stay within a fixed interval, see Lemma 1.
In practice, we choose this interval from prior simulation.

Lemma 1: Define M := AᵀA+ρI, n := M−1Aᵀb and
c :=

√
nλ/ρ||2ρM−1 − I||2+||n||2. Since σ := ||ρM−1||2

is in (0, 1], we have the following bounds for the quantity
||xk+1 + wk||∞ in (3), for all k = 1, . . . ,Kiter:

||xk+1 + wk||∞ ≤ σk||n||2+(1− σk)/(1− σ)c, if σ < 1

||xk+1 + wk||∞ ≤ ||n||2+kc, if σ = 1.

Proof: Let yk := xk+wk−1 Manipulating (3), we get:

yk+1 = (I− ρM−1)yk + (2ρM−1 − I)zk + n

= ρM−1yk + (2ρM−1 − I)(zk − yk) + n.

The expression of the thresholding operator gives the follow-
ing bound: −λ/ρ ≤ zki −yki ≤ λ/ρ, for i = 1, . . . , n. Then,
using the triangle inequality and submultiplicative property:

||yk+1||2≤ ||ρM−1yk||2+||(2ρM−1 − I)(zk − yk)||2+||n||2
≤ ||ρM−1||2||yk||2+

√
nλ/ρ||2ρM−1 − I||2+||n||2.

To get the desired bounds, set z0 = w0 = 0, compress the
geometric progression and use ||yk+1||∞≤ ||yk+1||2.

For efficiency, we implement the Paterson-Stockmayer
algorithm [22], which reduces the number of homomorphic
multiplications to evaluate a polynomial of degree n to⌈√

2n+ log n
⌉

+ O(1) (from O(n) in the naive case) by
recursively evaluating polynomials of smaller degree, and
consumes dlog ne levels.

B. Challenge: Evaluating iterations

The polynomial approximation could have a high degree,
so to continue the subsequent iterations we need to bootstrap.
We employ multiple servers to realize a cheaper bootstrap-
ping compared to a centralized bootstrapping and a less
burdensome solution than requesting client action.

We turn to the distributed version of ADMM [18], such
that we use the servers both to ease the computation of the
optimal solution and to ensure privacy through encrypted
computations. We split the matrix A and vector b into K
parts, each to be held by a server, and rewrite (2) as:

min
x1,...,xK ,z

1

2

K∑
i=1

||Aixi − bi||22+λ||z||1

s.t. xi − z = 0, i = 1, 2, . . . ,K.

(4)

The ADMM algorithm for problem (4) is:

xk+1
i = (Aᵀ

iAi + ρI)
−1 (

Aᵀ
i bi + ρ(zk −wk

i )
)

zk+1 =
1

K
Sλ/ρ

( K∑
i=1

xk+1
i +

K∑
i=1

wk
i

)
wk+1
i = wk

i + xk+1
i − zk+1, i = 1, . . . ,K.

(5)

Each server is given ciphertexts corresponding to Ai,bi.
We assume a preprocessing step where servers precompute
convenient ciphertexts to be used in the online iterations,
e.g., 1/ρAᵀ

i bi and ρ (Aᵀ
iAi + ρI)

−1. The servers can use
the matrix inversion lemma to compute an inversion of a
smaller matrix, which saves in offline computation. Online,
each server locally computes the encryptions of xi and wi,
then communicates to the others the local sum xk+1

i +wk
i , so

all servers are able to compute zk+1. So far, the only commu-
nication necessary is the same as in the unencrypted ADMM.



C. Challenge: Realizing the fewest bootstrapping operations
Distributed bootstrapping requires all parties to start by

holding the same ciphertext that will then be refreshed. Boot-
strapping the ciphertext encrypting zk+1 seems attractive,
since it is global and its evaluation involves the most sequen-
tial multiplications. But wk+1

i loses levels through xk+1
i ,

which is the result of a multiplication; so we would need to
bootstrap both before and after computing zk+1.

Instead, we do the following trick. Each server already has
to compute and send a ciphertext encrypting xk+1

i +wk
i to the

other servers in order to compute the global iterate zk+1. This
means that each server can construct a packed ciphertext
ck+1 encrypting [(xk+1

1 + wk
1)ᵀ . . . (xk+1

K + wk
K)ᵀ] and

distributedly bootstrap it. Afterwards, each server extracts the
refreshed ciphertext containing its local value xk+1

i +wk
i , as

well as a refreshed ciphertext containing
∑K
i=1 x

k+1
i + wk

i

by repeatedly rotating and summing the refreshed ciphertext
ck+1. From this value, each server can locally compute its
encrypted iterates wk+1

i and xk+1
i , while bootstrapping only

once per iteration rather than twice.
Apart from xk+1

i +wk
i , the servers send one more message

to complete the bootstrapping, so there are two rounds of
communication per iteration. In the full version [23], we
analyze the number of levels this computation requires and
why bootstrapping every iteration rather than once every few
iterations leads to smaller parameters and ciphertexts.

D. Encrypted protocol
Protocol 1 describes the steps for privately solving the

distributed Lasso problem. We use an optimized diagonal
method [24] for encrypted matrix-vector multiplication. Con-
sider a matrix S ∈ Rn×n and a vector p ∈ Rn. Denote the
diagonals of S by di, for i = 0, . . . , n−1. Let n1 := d

√
n/2e

and n2 := n/n1. The corresponding result q = Sp is:

q =

n−1∑
i=0

di�ρ(p, i) (6)

=

n2−1∑
j=0

ρ

( n1−1∑
k=0

ρ(dj·n1+k,−j·n1)�ρ(p, k); j·n1
)
. (7)

With (7), we need n1+n2 = O(
√
n) homomorphic rotations,

given ρ(dj·n1+k,−j ·n1), instead of n if we use (6). In both
cases we require n homomorphic multiplications.

For a rectangular matrix, we need extended diagonals but
the method is the same. MultDiag(S,p) takes as inputs the
matrix S as separate ciphertexts encoding diagonals rotated
accordingly and the vector p encoded in a ciphertext with
trailing zeros, and returns a ciphertext that encodes the result
q with trailing zeros. In line 9 in Protocol 1, a masking
is performed to satisfy the requirement for p. MultDiag is
performed locally at the servers (lines 3 and 11).

ApproxSoftT(p) implements the Chebyshev interpolation
element-wise for p, for a given set of coefficients (that
specify the degree and the interval). Internally, the input is
normalized to the interval [−1, 1] and the output is a cipher-
text encoding the result with trailing zeros. ApproxSoftT is
performed locally (line 8 in Protocol 1).

DBoot(p, ski) is a distributed protocol, where servers start
with the ciphertext of the vector p and each inputs their share
of the private key ski, and servers obtain a ciphertext that
contains the refreshed p on a predetermined level (line 6 in
Protocol 1). It implies one round of communication.

Proposition 1: Protocol 1 achieves client data confiden-
tiality with respect to semi-honest servers, assuming at least
one of the servers is honest.

The proof is given in the full version of this paper [23].

PROTOCOL 1: Distributed encrypted protocol for (4).
Input: Public parameters: public key pk, number of servers K,

number of iterations Kiter. C: secret key sk =
∑K
i ski.

S1, . . . , SK : encryption of Mi = ρ(Aᵀ
iAi+ρI)

−1, encryption
of mi =

1
ρ
(Aᵀ

ibi), share of the secret key ski, the Chebyshev
coefficients for evaluating Sλ/ρ(·) on a given interval.

Output: C: x∗.
1: Si=1,...,K : set initial values Ev0(x

0
i ), Ev0(w

0
i ), Ev0(z

0) (the
value of zk is previously agreed upon);

2: for k = 0, . . . ,Kiter − 1 do
3: Si=1,...,K : Ev0(x

k+1
i ) = MultDiag(Mi,mi+ zk −wk

i );
4: Si=1,...,K : compute and send to other servers the rotation

of the sum Ev0(vi) := ρ(xk+1
i +wk

i ,−(i− 1)n);
5: Si=1,...,K : assemble Ev∗(v) := Ev∗([v1 v2 . . .vK ]) by

summing own ciphertext and all received shifted ciphertexts;
6: Si=1,...,K : perform own part in the distributed bootstrap-

ping and get Ev∗(v
b) := DBoot(Ev∗(v), ski);

7: Si=1,...,K : extract its refreshed sum of local iterates
Ev∗(v

b
i ) = ρ(Ev∗(v

b), (i− 1)n);
8: Si=1,...,K : compute Ev∗(

∑K
i=1 x

k+1
i +wk

i ) from Ev∗(v
b),

then Ev0(z
k+1) = ApproxSoftT( 1

K

∑K
i=1 x

k+1
i +wk

i , λ/ρ);
9: Si=1,...,K :Ev0(w

k+1
i ) = [1ᵀ

S 0ᵀ]ᵀ�Ev∗(v
b
i )−Ev0(z

k+1);
10: end for
11: S1: compute Ev0(x

Kiter
1 ) = MultDiag(M1,m1+zKiter−1−

wKiter−1
1 ) and send it to the client C;

12: C: decrypt and extract x∗.

V. CASE STUDY: DATA PREDICTIVE CONTROL

Consider a linear system with unknown model parameters.
A client wants to compute a reference-tracking LQR control,
based only on precollected input-output data. We reformulate
this control problem using the behavioral framework [3]–[5].

In (8), we construct block-Hankel matrices for the “past”
and “future” input and output data, ud ∈ RmT and yd ∈
RpT , for M samples for the past data and N samples for
the future data, where S := T − M − N + 1 and Up ∈
RmM×S ,∈ RmN×S ,Yp ∈ RpM×S ,Yf ∈ RpN×S :

HM+N (ud) =:

[
Up

Uf

]
, HM+N (yd) =:

[
Yp

Yf

]
. (8)

Assume we have data richness, i.e., the precollected input
is persistently exciting [3]. This requires that the precollected
input signal has length at least (m+ 1)(M +N + n)− 1.

Fix a time t and let ūt = ut−M :t−1, ȳt = yt−M :t−1 be the
batch vector of the last M inputs and outputs, respectively. If
M ≥ n, the LQR problem can be reformulated as a data pre-
dictive control problem [4], where the state representation is
replaced with precollected data. According to the behavioral
framework, an input-output trajectory of a linear system is in



the image of the block-Hankel matrices for the precollected
data, i.e., the constraint in (9), where g is a preimage of the
trajectory. Q, R are LQR costs and r is the desired reference.
The first m elements of u∗,t are input into the system in a
receding horizon fashion and y∗,t is the predicted output.

min
g,u,y

1

2

N+t−1∑
k=t

(
||yk − rk||2Q+||uk||2R

)
(9)

s.t. [Uᵀ
p Yᵀ

p Uᵀ
f Yᵀ

f ]
ᵀ · g = [ūᵀ

t ȳᵀ
t uᵀ yᵀ]

ᵀ
.

In practice, there is noise affecting the output measurement
and precision errors induced by encryption, which might
prevent an exact solution to (9). Hence, we prefer a relaxation
of the equality constraints via an `2-least-squares approach
with penalties λy and λu. We rewrite (9) as a minimization
problem depending only on g by enforcing u = Ufg and
y = Yfg. We also batch the objective function, using the
same notation Q,R, r for the batched costs and reference.

Finally, to avoid overfitting due to noisy data, in (10) we
penalize the magnitude of g through an `1-regularization
with penalty λg . In the noiseless data predictive control
formulation, the block-Hankel matrix of the trajectory data
has an inherent low-rank structure, so choosing an `1-
regularization acts like a convex relaxation of imposing a
low-rank constraint–see [6, Thm. 4.6] for more details.

min
g

1

2

(
||Yfg − rt||2Q+||Ufg||2R

)
+

λy||Ypg − ȳt||22+λu||Upg − ūt||22+λg||g||1.
(10)

Notice that (10) is indeed a Lasso problem:

min
g

1

2
||Hg − Jft||22+λg||g||1, (11)

where we have J := blkdiag (2λyI, Q, 2λuI, R)
1/2

, ft :=
[ȳᵀ
t rᵀt ūᵀ

t 0ᵀ]
ᵀ
,H := J[Yᵀ

p Yᵀ
f Uᵀ

p Uᵀ
f ]

ᵀ
.

Our goal now is to provide a solution that outsources to
a cloud service the computation of the optimal solution g∗,t

of (11) and of u∗,t = Ufg
∗,t, while ensuring client data

confidentiality for all time steps, as described in Section II.

VI. ENCRYPTED DATA PREDICTIVE CONTROL

Following the discussion in Section IV, we write prob-
lem (11) as a distributed problem with split variables:

min
g1,...,gK ,z

1

2

K∑
i=1

||Higi − (Jft)i||22+λg||z||1

s.t. gi − z = 0, i = 1, 2, . . . ,K.

(12)

Problem (12) needs to be solved for each time step t and ft
needs to be updated with the latest input and output values.

In this particular context, when we perform a homogenous
split of the data (splitting the component matrices Up,Uf ,
Yp,Yf of H equally between the K servers), the distributed
solution converges very slowly to the global optimal solution.
The reason behind this is that each server solves a local
optimization problem for the same system that generated
the values, but being given fewer samples than necessary
to characterize the behaviour of the system, i.e., losing
persistency of excitation.

To avoid this issue, we prefer to unequally split the prob-
lem. Specifically, we designate Server 1 to have most of the
rows and the rest of the servers to hold fewer. Because the
local solution of Server 1 is close to the central solution, the
empirical convergence to the optimal solution is much faster.

Let the matrix H1 denote the first (m+p)M+pN rows of
matrix H ∈ R(m+p)(N+M)×S . We split the remaining rows
of H into blocks of mN/(K − 1) rows, denoted Hi for i =
2, . . . ,K. We similarly split HᵀJ ∈ RS×(m+p)(N+M) into
H̄1 and H̄2 . . . , H̄K and ft ∈ Rm into f1,t and f2,t, . . . , fK,t.
We prefer to use more of less powerful machines in order
to increase the security threshold (by splitting the secret key
into more values) and reduce the cost of operating the cloud
service. To this end, we shift some of the computations from
the less powerful servers to the more powerful Server 1 and
remove online communication between the client and the less
powerful servers. We describe below the steps of the protocol
for encrypted non-homogeneous ADMM for problem (10)
and provide the pseudocode in the full version [23].

First, we choose the data split so fi,t = 0, for i > 1.
Second, Servers 2, . . . ,K have an easier offline computation,
since they have to invert substantially smaller matrices than
Server 1 (via the matrix inversion lemma). The bootstrapping
step is done the same as in Protocol 1, after all parties broad-
cast their local sums. However, we let only the more powerful
Server 1 perform the summation

∑K
i=1 g

k+1
i + wk

i and the
evaluation of the soft thresholding approximation, and then
send the result zk+1 to the others. Then, all servers continue
with the computation of wk+1

i and finish the iteration.
Because the elements of ft corresponding to Servers 2, . . . ,

K are 0, there is no need for them to update with the latest
values of ut and yt. This way, only Server 1 needs to have
a connection with the client. The ciphertexts communicated
to the client are on level 0 (the predicted input u∗,t).

VII. NUMERICAL RESULTS

We consider a data-driven temperature control of a 4x4
stable system representing a building with four rooms, with
sampling time 300 seconds, and M = 4, N = 8, T = 84. We
add zero mean Gaussian process and measurement noise with
covariance 0.01I . The cost and regularization parameters are
Q = 300I,R = I, λg = 300, λy = λu = 3000. The data
was distributed among 3 servers: Server 1 holds 64 rows
and Servers 2 and 3 hold 16 rows each. Convergence for
the Lasso problem associated to one time step occurred after
20 ADMM iterations, for ρ = 1200. Figure 1 reflects the
tracking performance of the data predictive control problem.

We evaluated the protocol from Section VI on Ubuntu
18.04 on a commodity laptop with 8 GB of RAM and Intel
Core i7, implemented using the PALISADE library [25],
using 8 threads. We set a security level of 128 bits using a
ciphertext modulus of 436 bits and a ring dimension of 214.
We obtained 6 decimal places precision for the results.

The average time for an iteration is 1.98 seconds. The time
for Server 1 to assemble the vector f1,t from the client and to
compute the prediction is 0.61 seconds. The client needs 0.07
seconds to decrypt the control input and to encrypt the new
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Fig. 1. Comparison between the tracking performance (temperature in 4
rooms) of the data predictive controller solving (11) exactly via the CVX
solver, and via distributed ADMM with 3 servers and approximating the soft
thresholding function with a degree-11 polynomial. The vertical dashed line
marks the first M time steps, corresponding to the initial offline data.

measurement and the input. The total computation time per
solving the optimization problem is 38.44 seconds, not taking
communication into account. The setup takes 4.5 seconds,
and is performed once for all subsequent iterations. Overall,
the maximum amount of memory Server 1 needs to have is
1.22 GB, while Server 2 and 3 need 0.52 GB.

To simulate less powerful devices, we run Servers 2 and 3
on 2 threads instead of 8. The total time necessary for the
20 iterations increases to 49.96 seconds. The majority of the
difference comes from the final operation of bootstrapping.
Because the servers only need to synchronize in order to
bootstrap, Server 1 can either wait for the other servers to fin-
ish the computation or can perform two local updates of g1.
Empirically, performing more local iterations at Server 1
helps convergence speed. Nevertheless, the computation of
the control input is ready in one sixth of the sampling time.

Figure 2 depicts how the time for one ADMM iteration
varies with the dimension of the problem, i.e., number of
columns of A in (2). The blue bar shows the time for
lines 3, 4 in Protocol 1, effectively consisting of the matrix-
vector product. The yellow bar shows the time for lines
5, 6, representing the preparation for bootstrapping and the
bootstrapping itself. The red bar represents lines 7–9, con-
sisting mostly of the polynomial evaluation. We stress that
through packing, we made the bootstrapping and polynomial
evaluation independent from the dimension of the problem.
However, at large dimensions the encrypted matrix multipli-
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Fig. 2. Timing at one server for one iteration of solving Lasso problems
of various dimensions via encrypted distributed ADMM with 3 servers
(Protocol 1). The legend shows different steps in an iteration.

cation takes most of the computational and memory effort,
and other methods that decrease storage and operations at
the cost of more levels might be preferable.
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