
Towards Private Data-driven Control

Andreea B. Alexandru Anastasios Tsiamis George J. Pappas

Abstract— Control as a Service (CaaS) is becoming a reality–
particularly in the case of building automation and smart
grid management. Often, the control algorithms in CaaS focus
on controlling the client’s system directly from input-output
data, since the system’s model might be private or unavailable.
Therefore, large quantities of data collected from the client need
to be uploaded to a cloud server. This data can be used by a
malevolent cloud service provider to infer sensitive information
about the client and mount attacks. In this paper, we co-design
a solution that interlaces control and privacy. Our goal is to
perform online data-driven control on encrypted input-output
data, while maintaining the privacy of the client’s uploaded
data, desired setpoint and control actions. We design our control
algorithm based on results from the behavioral framework,
which is more encryption-friendly compared to other classical
frameworks. We obtain privacy by using a leveled homomorphic
encryption scheme to enable the cloud to perform complex
computations on the client’s encrypted data. Finally, we achieve
efficiency by manipulating the tasks required by the control
algorithm such that they only involve arithmetic circuits, as
well as by leveraging parallelization and ciphertext packing.

I. INTRODUCTION

The shift in paradigm brought by the advent of cloud
computing has facilitated more and more services to be
offloaded to the cloud. Examples include analytics and
machine learning over data collected distributedly, smart grid
control and management, and process control. In the area of
smart building control, the Internet of Things technology has
created numerous opportunities for automation [1], leading
to the emergence of Control as a Service (CaaS) businesses.
The owners/clients are incentivized to outsource the building
infrastructure management to a CaaS business that offers spe-
cialized algorithms to optimize a desired energy cost, while
achieving the desired levels of comfort. At the same time,
the CaaS algorithms need to guarantee cybersecurity and
privacy for the client’s privacy-sensitive data collected and
computed upon at the CaaS cloud server. Otherwise, the large
collection of data from the IoT sensors and devices could be
used by a malevolent cloud service provider or a hacker to
infer sensitive information about the people occupying those
buildings or mount attacks on the infrastructure.

A. Related work

In recent years, there has been a surge of interest in private
control algorithms that operate on encrypted data [2]–[7].
Most of the works in this area consider the system parameters
to be public and compute mainly linear control algorithms,
which require only partially homomorphic encryption (PHE)

The authors are with the Department of Electrical and Sys-
tems Engineering, University of Pennsylvania, Philadelphia, PA 19104.
{aandreea,atsiamis,pappasg}@seas.upenn.edu

schemes. Nonlinear control algorithms are considered in [4],
[5], where PHE is either combined with secure multiparty
computation tools or the client partakes in the computation.
The exceptions to using PHE in encrypted control are [2],
[6], [7], which use either somewhat or (leveled) fully ho-
momorphic encryption (FHE) schemes to guarantee more
privacy for the client’s system parameters or to achieve more
complex control algorithms. The closest work to this paper
is [7], where the cloud computes the value function in a
reinforcement learning task over multiple time steps in a
one-shot way with FHE.

Since its genesis in [8], FHE has been substantially devel-
oped, in terms of more efficient leveled constructions [9]–
[11], bootstrapping methods [12], [13], computational and
hardware optimizations. There are many libraries that imple-
ment various FHE schemes and capabilities [14]–[17] and a
tremendous number of papers that build on them.

Identification and data-driven control of unknown systems
has been extensively studied in classical and recent liter-
ature [18]–[23]. Most methods are usually designed with
the objectives of sample-efficiency and control performance,
without considering privacy requirements. For example, the
standard system identification-certainty equivalence control
architecture might require solving non-convex problems [24]
or involve operations which are not encryption-friendly, e.g.
Singular Value Decomposition [19]. Other methods might be
more compatible with modern encryption tools, for example
the behavioral framework [20]–[23], [25], which has received
renewed attention recently. In the behavioral framework, an
alternative representation of linear systems is considered: the
system can be directly represented in terms of input-output
data [20]; the only requirement is that the input should be
rich enough (persistently exciting). Although the behavioral
representation is less parsimonious than the state space one,
it enables us to use less costly encrypted operations.

B. Contributions

Our aim is to give the first solution to the problem of
encryption-aware data-driven control. Precisely, we consider
that the model parameters of a linear system to be controlled
are either not available, variable or privacy-sensitive. Unlike
the known-model case, the existing control techniques might
not be encryption-friendly. To this end, we co-design the
control scheme with respect to both control performance
and privacy specifications. Our controller is based on the
behavioral framework and the control performance is cap-
tured by the LQR cost. We consider i) an offline version,
where the cloud computes an offline feedback control law
on precollected encrypted data from the client, and ii) an

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7446-4/20/$31.00 ©2020 IEEE 5449

online version, where the cloud computes the control based
on both the offline precollected data and on new encrypted
samples received from the client. In both cases, the cloud has
to process the received data in a timely manner to send
back a control input for the system at every time step.
This problem involves nonpolynomial computations, so we
leverage approximations of the initial problem to allow the
implementation with a leveled homomorphic cryptosystem.

Specifically, our contributions are the following:
• Propose an approximation of a data-predictive control

problem that is amenable to encrypted implementation.
• Extend this approximation to allow online collection

and incorporation of samples to improve robustness.
• Formulate optimized encrypted algorithms for offline

and online feedback data-driven control problems.
• Implement the algorithms and showcase the results for

a temperature control problem.

II. PROBLEM FORMULATION

A client owns system (1) and contracts a cloud service to
provide the control for this system:

xt+1 = Axt + But + e1
t , yt = Cxt + e2

t , (1)

with x, e1 ∈ Rn, u ∈ Rm and y, e2 ∈ Rp.
A private CaaS should solve the control problem that

minimizes the cost associated to setpoint tracking while
satisfying the unknown system’s dynamics (1).

Control requirements. Assume we are given a batch
of offline input-output data for system (1). At every time t,
given all the previous input-output samples, i.e., u0:t−1 and
y0:t−1, we want to privately compute the receding horizon
control u∗,t ∈ RNm in order to track the reference r for
some costs Q̄ and R̄, which is the solution of the LQR
optimization problem:

min
u,y

1

2

N+t−1∑
k=t

(
||yk − rk||2Q̄+||uk||2R̄

)
s.t. xk+1 = Axk + Buk, yk = Cxk,

(2)

with no prior knowledge about the system model A,B,C.
We also want (2) to perform well under (small) process and
measurement noise e1

t , e
2
t . In Section III, we describe a data-

driven reformulation of (2) that is encryption-friendly.
Privacy requirements. In the scenario we consider, the

cloud service should not be able to infer anything about the
client’s private data, which consists of the input signals u,
the output signals y, the model A,B,C and state x (which
are unknown in a data-driven control problem), and any
intermediate values. The costs Q̄, R̄ can be chosen by the
cloud, as part of the CaaS service or chosen by the client. The
cloud service is considered to be semi-honest, which means
that it does not deviate from the client’s specifications. We
assume this to be the case because the cloud server is under
contract. Furthermore, the cloud service should receive all
the data from the client in encrypted form and hence, only
perform operations on encrypted data.

The formal privacy definition can be written in the stan-
dard simulation paradigm [26, Ch. 7, Def. 7.2.1], i.e., the
input-output distribution of the cloud server is computation-
ally indistinguishable from the input-output distribution of a
simulator that does not receive any of the client’s messages.

Efficiency requirements. The computation time of the
control action at the current time step should not exceed the
sampling time of the system. We also require the client to
be exempt from heavy computation and communication.

III. ENCRYPTION-AWARE REFORMULATION

We can reformulate the control problem (2) inspired by the
behavioral framework [20]–[23]. First, we introduce some
preliminary concepts. A block-Hankel matrix for the input
signal u =

[
uᵀ

0 uᵀ
1 . . . uᵀ

T−1

]ᵀ ∈ RmT is given by the
following, for a positive integer L:

HL(u) :=


u0 u1 . . . uT−L
u1 u2 . . . uT−L+1

...
. . .

...
uL−1 uL . . . uT−1

 .
By definition, the signal u is persistently exciting of order
L if HL(u) ∈ RmL×(T−L+1) is full row rank.

Let us construct block-Hankel matrices for the “past” and
“future” input and output data, ud ∈ RmT and yd ∈ RpT ,
for M samples for the past data and N samples for the future
data, where S := T −M −N + 1 and Up ∈ RmM×S ,Uf ∈
RmN×S ,Yp ∈ RpM×S ,Yf ∈ RpN×S :

HM+N (ud) =:

[
Up

Uf

]
, HM+N (yd) =:

[
Yp

Yf

]
. (3)

A. Offline feedback data-driven control problem
Assume we are given precollected input and output data

satisfying Assumption 1. Let Up,Yp,Uf ,Yf be the respec-
tive past and future Hankel matrices, for some past and future
horizons M,N .

Assumption 1 (Data richness): The precollected offline
input trajectory ud is persistently exciting of order M+N+
n, where n is the order of the system [20].

Fix a time t and let ūt = ut−M :t−1 be the batch vector of
the last M inputs. The batch vector ȳt of the last M outputs
is defined similarly. If M ≥ n, the standard LQR problem (2)
can be re-formulated as the data-driven control problem [22]
in (4), where the state representation is replaced with the
precollected data. According to the behavioral framework,
an input-output trajectory of a linear system is in the image
of the block-Hankel matrices for the precollected data, i.e.,
the constraint in (4), where g is a preimage of the trajectory.
The first m elements of u∗,t are then input into the system in
a receding horizon fashion and y∗,t is the predicted output.

min
g,u,y

1

2

N+t−1∑
k=t

(
||yk − rk||2Q̄+||uk||2R̄

)

s.t.


Up

Yp

Uf

Yf

 · g =


ūt
ȳt
u
y

 .
(4)

5450

We now depart from the behavioral control problem (4)
considered in the existing literature and explore a more
encryption-friendly form. First, we rewrite (4) as a mini-
mization problem depending only on g by enforcing u =
Ufg and y = Yfg. Second, in practice, there will be
noise affecting the output measurement, as well as precision
errors induced by encryption, which might prevent an exact
solution to the equality constraint of (4). Hence, we prefer a
regularized least-squares approach to the equality constraint
in (4) with regularization weights λy and λu. Finally, to avoid
overfitting, we also penalize the magnitude of g through two-
norm regularization. We opt for two-norm regularizations to
obtain better efficiency for the encrypted algorithm, as well
as more robustness with respect to noise, and uniqueness of
solution g∗,t. This yields the following formulation, where
Q = blockdiag(Q̄, . . . , Q̄) and R = blockdiag(R̄, . . . , R̄):

min
g

1

2

(
||Yfg−rt||2Q+||Ufg||2R+λy||Ypg−ȳt||22+

+λu||Upg−ūt||22+λg||g||22
)
.

(5)

Note that the resulting problem (5) is an approximation
of (4). Finally, (5) can be written as a quadratic program:

min
g

1

2
gᵀMg−gᵀ

(
YfᵀQrt+λyY

pᵀȳt+λuU
pᵀūt

)
,

(6)

where M ∈ RS×S is:

M := YfᵀQYf+UfᵀRUf+λyY
pᵀYp+λuU

pᵀUp+λgI.

Since (6) is strongly convex, we can find the optimal value
for g∗ by zeroing the gradient of the objective function:

g∗,t = M−1
(
YfᵀQrt + λyY

pᵀȳt + λuU
pᵀūt

)
. (7)

The optimal control input is obtained from (7):

u∗,t = UfM−1
(
YfᵀQrt + λyY

pᵀȳt + λuU
pᵀūt

)
, (8)

from which we input u∗,t[0:m−1] to the unknown system.
As seen from (8), the controller has the form of a dynamic

output-feedback law, where the feedback terms are computed
using only the offline precollected data.

B. Online feedback data-driven control problem

To satisfy Assumption 1, it is necessary that the pre-
collected input signal has length at least (m + 1)(M +
N + n) − 1, cf. [22]. In practice, Assumption 1 might be
violated if, for example, less precollected data is available.
Precollected data can also be affected by perturbations, e.g.
measurement noise. To alleviate these issues, we prefer an
online algorithm, where the Hankel matrices HM+N (ud)
and HM+N (yd) are updated at each time step with the
used control input and the corresponding output measured.
Collecting a number of new samples empirically ensures
richness of the data and robustness to perturbations.

Note that the precollected and the online data in such an
online feedback algorithm belong to different trajectories.
For this reason, we must compute the Hankel matrix for each

data set separately, then append them in a single matrix [27].
This means that the online adaptation of the matrices
Up,Uf ,Yp,Yf can only start at time t = M+N−1, after
we obtained enough data u0,y0, . . . ,uM+N−1,yM+N−1 to
fill the first Hankel matrix column for the online data set.

The data-driven LQR algorithm is given in Algorithm 1.

Algorithm 1 Online data-driven control algorithm

Input: ū0, ȳ0, Up,f
0 , Yp,f

0 , Q, R, λy , λu, λg , S = T−M−N+1.
Output: ut for t = 0, 1,

1: for t = 0, 1, . . . ,M − 1 do
2: Randomly select and input ut then measure yt.
3: end for
4: Construct ūt = u0:M−1 and ȳt = y0:M−1.
5: for t = M,M + 1, . . . do
6: Solve (6) for g∗,t and obtain (7).
7: Compute u∗,t = Uf

t g∗,t and obtain (8).
8: Input to the system ut = u∗,t[0:m−1].
9: Measure the output yt.

10: Update ūt and ȳt to be the last M components of[
ūᵀ
t uᵀ

t

]ᵀ and
[
ȳᵀ
t yᵀ

t

]ᵀ, respectively.
11: if t = M +N − 1 then
12: Add u0:t and y0:t to the S + 1’th column of the

trajectory Hankel matrices.
13: else if t > M +N − 1 then
14: Set S = S + 1. Use ut to add a new column to both

Up
t+1 and Uf

t+1 as in (3). Perform the corresponding operations
for Yp

t+1 and Yf
t+1 using yt.

15: end if
16: end for

IV. HOMOMORPHIC ENCRYPTION PRELIMINARIES

The decryption primitive of a homomorphic encryption
scheme is a homomorphism from the space of encrypted
messages, or ciphertexts, to the space of unencrypted mes-
sages, or plaintexts. Homomorphic encryption allows one
server (in contrast to multiple servers in secure multiparty
computation tools) to evaluate multivariate polynomial func-
tionalities over the encrypted data of the client, while keeping
control over the accuracy of the result at a desired security
level (in contrast to differential privacy, where there is an
accuracy-privacy trade-off). An encryption scheme is called
partially homomorphic if it supports the encrypted evaluation
of either a linear polynomial or a monomial, somewhat or
leveled homomorphic if it supports the encrypted evaluation
of a polynomial with a finite degree and fully homomorphic
if it supports the encrypted evaluation of arbitrary polynomi-
als. Leveled homomorphic schemes can be turned into fully
homomorphic schemes by a bootstrapping operation. The
common term for such a multivariate polynomial functional-
ity is arithmetic circuit and the logarithm of the degree of the
polynomial determines the multiplicative depth of the circuit.
We call multiplicative budget the multiplicative depth of the
deepest circuit that can be evaluated by a specific instance
of a leveled homomorphic encryption.

In this paper, we work with a leveled homomorphic
encryption scheme. Specifically, we use the version of the
CKKS scheme [11], optimized to run on machine word size
of 64-bit integer arithmetic [28], [29]. We chose this scheme

5451

because it can perform operations on encrypted real num-
bers with a smaller error than other leveled homomorphic
schemes. Each real number is multiplied by a positive integer
scaling factor and truncated, as commonly done, but the real
advantage of this scheme is that one can remove the extra
scaling factor occurring in the result after a multiplication,
through a rescaling procedure, at very little error. This
manages the magnitude of the underlying plaintexts, which
could otherwise cause overflow in a large depth circuit.

A ciphertext’s size grows with the number of sequen-
tial multiplications it supports. Each ciphertext, respectively
plaintext, is characterized by a level and a number of moduli.
A new ciphertext (freshly encrypted, rather than obtained
as the result of operations on other ciphertexts) has level 0
and has as many moduli as the multiplicative budget. After
one multiplication followed by one rescaling procedure, the
number of levels increases by 1 and one modulus is dropped.

To avoid some technicalities and parallel the notion of
circuit depth, we refer to the multiplicative depth of a
ciphertext as being the multiplicative depth of the circuit
from which that ciphertext is obtained as a result. Intuitively,
the multiplicative depth d(x) of a ciphertext x obtained as a
result of a circuit is equal to the number of levels consumed
by evaluating that circuit from a fresh ciphertext plus 1.

In the CKKS scheme, each plaintext is a polynomial in
the ring of integers of a cyclotomic field with dimension
ringDim. This enables the encoding of multiple scalars
in a plaintext/ciphertext and performing single instruction
multiple data (SIMD) operations, which can bring major
computation and storage improvements when evaluating an
arithmetic circuit. We can pack up to ringDim/2 values
in one plaintext/ciphertext using a Discrete Fourier Trans-
form [11]. Packing can be thought of as the ciphertext having
ringDim/2 independent data slots. Abstracting the details
away, the SIMD operations that can be supported are addi-
tion, element-wise multiplication by a plaintext or ciphertext
and data slot permutations that can achieve ciphertext rota-
tions (e.g., used for summing up the values in every slot). In
what follows, we will use + and � for SIMD addition and
multiplication and ρ(x, i) to denote the row vector x rotated
to the left by i positions (i < 0 means rotation to the right).

A scheme has a security parameter κ if all known attacks
against the scheme take 2κ bit operations. For CKKS, the
security parameter is determined according to the Decisional
Ring Learning with Errors problem hardness [30]. We are
also interested in the semantic security of this encryption
scheme, which, at a high level, states that any two ciphertexts
are computationally indistinguishable to an adversary that
does not have the secret key.

We will denote by ev0(x) the encoding of the vector x
followed by trailing zeros into a plaintext and by ev∗(x)
the encoding of the vector x followed by junk elements
(elements whose value we do not care about). We denote
by evv(x) the encoding of the repeated vector x: [xxx . . .].
When constructing ciphertexts through encryption, we use
similar notations for the encryptions of the corresponding
plaintexts encoding vectors: Ev0(x), Ev∗(x) and Evv(x).

V. CO-DESIGN OF ENCRYPTED CONTROLLER

According to the requirements in Section II, the challenges
for the encrypted data-driven control can be summarized as:
• The computations are iterative and not readily formu-

lated as (low-depth) arithmetic circuits.
• The problem is computationally intensive: it requires

large storage, large matrix inversions and many consec-
utive matrix multiplications.

• The precision loss due to the private computations
should not affect the control performance.

To deal with these challenges, we design an encrypted ver-
sion of the closed-form solution (7) of the control problem
stated in Section II and manipulate the computations involv-
ing matrix inverses to reduce the multiplicative depth needed.
We employ the CKKS homomorphic scheme described in
Section IV to address the precision challenge.

As hinted in the problem reformulation, we approximate
problem (4) into problem (6) to simplify the encrypted com-
putations. We prefer the closed-form solution (8) to an
iterative solution that would increase the depth with each
iteration. However, this closed-form solution involves the
encrypted inversion of a matrix, which cannot be generally
written as a low-degree polynomial. In the offline feedback
problem (6), the complex computations can be all performed
offline, leaving only three encrypted matrix-vector multi-
plications to be performed at each time step, as shown in
Section VI. But in the online feedback algorithm, a matrix in-
version and many consecutive matrix-vector multiplications
are required at every time step. In Section VII, we leverage
the special structure of the matrix to be inverted by using
Schur’s complement [31] to reformulate the inverse com-
putation as some lower multiplicative depth matrix-vector
multiplications and one scalar division. To avoid performing
the division on encrypted data, the server sends to the client
the numerator and denominator of the result, and the division
is performed after decryption by the client.

For simplicity, we drop the time t indices in the rest of this
section. For step t = 0, all the values involved in computing
u∗ in (8) are precollected and can be computed offline.
This includes the inverse M−1 and other matrix products.
However, at the next time step, cf. line 14 in Algorithm 1:

Up′ :=
[
Up up

]
, Uf ′ :=

[
Uf uf

]
.

The last m blocks in uf are the values of ut at the previous
time step. Analogous equations can be written for Yp′ :=[
Yp yp

]
and Yf ′ :=

[
Yf yf

]
. Notice that the matrix:

M′ := (Yf ′)
ᵀ
QYf ′ + (Uf ′)

ᵀ
RUf ′ + λy(Yp′)

ᵀ
Yp′+

+ λu(Up′)
ᵀ
Up′ + λgI ∈ R(S+1)×(S+1)

is a rank-1 update of matrix M. Let

µ:=yf
ᵀ
Qyf+uf

ᵀ
Ruf+λyy

pᵀyp+λuu
pᵀup+λg

m:=yf
ᵀ
QYf+uf

ᵀ
RUf+λyy

pᵀYp+λuu
pᵀUp.

(9)

Specifically, M′ will have the following form:

M′ =

[
M mᵀ

m µ

]
.

5452

Schur’s complement [31] gives an efficient way of com-
puting M′

−1 from M−1, by inverting a single scalar mS :

mS := µ−mM−1mᵀ, (10)

M′
−1

=
1

mS

[
mSM

−1 + M−1mᵀmM−1 −M−1mᵀ

−mM−1 1

]
.

(11)

Finally, the depth of the arithmetic circuit computing
u∗[0:m−1] can be reduced through reordering of the intermedi-
ate operations. Given two circuits f and g with multiplicative
depth d(f) and d(g), the multiplicative depth of their product
is: d(fg) = max(d(f), d(g)) + 1. The multiplicative depth
should not be confounded with the number of multiplica-
tions. Judiciously choosing the order in which to perform
the multiplications can reduce the multiplicative depth of
the result. For example, consider we want to compute y =
x1x2x3x4, where d(xi) = 1. If we sequentially perform the
multiplications, we obtain d(y) = 4. However, if we perform
y = (x1x2)(x3x4), we obtain d(y) = 3. We will use this
trick in Section VII.

VI. OFFLINE FEEDBACK ENCRYPTED SOLUTION

Recall the closed-form solution of the optimization prob-
lem (6). We now compute the multiplicative depth of the
ciphertexts of interest for consecutive time steps. First, the
ciphertexts corresponding to the precollected input and out-
put measurements, the reference signal and measurements,
have a multiplicative depth of 1. This means, ∀t ≥ 0:
d(Up,f) = d(Yp,f) = d(ȳt) = d(rt) = 1. Second, we
assume that all the quantities obtained offline will have
multiplicative depth 1. Since these computations depend
only on the offline data and are one-time, expensive se-
cure solutions can be used, e.g., the cloud could perform
the encrypted computations, then perform bootstrapping to
refresh the ciphertexts [12], [13]. We do not address the
offline computations in this paper. This means that the
cloud has fresh encryptions of following products: Ar :=
EUfM−1YfᵀQ ∈ Rm×pN , Ay := EUfM−1λuY

pᵀ ∈
Rm×pM , Au := EUfM−1λuU

pᵀ ∈ Rm×mM , so they have
multiplicative depth 1, where E :=

[
Im 0(N−1)m

]
. Then:

ut = Arrt + Ayȳt + Auūt. (12)

For t = 0, we obtain d(u0) = max(d(r0) + 1, d(ȳ0) +
1, d(ū0) + 1) = 2. Generalizing:

d(ut) = d(ūt) + 1, t ≥ 0. (13)

At time t+ 1, ūt+1 will be updated by ut.
If we individually encrypt each element of the quantities

in (12) in a separate ciphertext, ūt+1 will have the multi-
plicative depth of ut and d(ut) = t+ 2. However, it is more
efficient from both storage and computation points of view
to encode a vector instead of a scalar in a ciphertext and per-
form the matrix-vector multiplications by a diagonal method,
using SIMD operations. This requires a different analysis.

We assume that at the onset of time step t, the cloud server
has Evv(ūt),Evv(ȳt),Evv(rt). It also has Ev0(diagiAr),

Ev0(diagiAy), Ev0(diagiAu), i.e., each extended diagonal
of the matrices Ar,Ay,Au is encrypted in a separate cipher-
text. From these quantities, the cloud server computes and
sends back to the client one ciphertext containing Ev∗(ut),
such that the client performs only one decryption. After that,
the cloud service has to create Evv(ūt+1) from Evv(ūt) and
Ev∗(ut). In order to update ūt+1, we:
• rotate Evv(ūt) by m positions to the left;
• apply a mask that extracts the first (M−1)m positions;
• add the masked and rotated Ev∗(ut) by (M − 1)m

positions to the right such that ut lands in the last m
positions of ūt+1;

• repeatedly rotate and add to obtain Evv(ūt+1).
Because of the CKKS encoding through the Discrete Fourier
Transform, the masking operation needs to consume a level
in order to preserve precision [11]. For t ≥ 1, equation (13)
becomes: d(ut) = d(ūt) + 1 = d(ut−1) + 2 = 2t + 2.
Evv(ȳt+1) can be updated the same way Evv(ūt+1) is
updated. However, it is the same cost for the client to encrypt
Evv(yt) and Evv(ȳt+1), so it can encrypt and send the latter.

Whenever the allocated multiplicative budget is exhausted,
the server can ask the client to send a fresh encryption of
ūt, at little extra cost (encryption of one packed ciphertext).

Nevertheless, a reasonable and inexpensive option is to ask
the client to send along with the encryption of yt a fresh
encryption of ut or of ūt at every time step. This would
imply that d(ut) = 2, i.e., a multiplication budget of only
2 is required for computing the control input for no matter
how many time steps.

Proposition 1: Assuming the usage of a semantically se-
cure leveled homomorphic encryption scheme, the encrypted
offline data-driven control algorithm achieves privacy with
respect to the server.

The proof immediately follows from the fact that the server
only receives fresh ciphertexts from the client. Using a stan-
dard simulation argument [26], we can construct a simulator
for the server that replaces the true messages from the client
by random encryptions of the same size. The input-output
distribution of such a simulator will be indistinguishable
from the input-output distribution of the true protocol.

VII. ONLINE FEEDBACK ENCRYPTED SOLUTION

There are several ways of implementing:

ut=EUf
tM

−1
t

(
(Yf

t)ᵀQrt+λy(Yp
t)ᵀȳt+λu(Up

t)
ᵀūt

)
.

Some variants optimize multiplicative depth, while others
optimize memory consumption. We chose to optimize the
multiplicative depth of the circuit, as long as it does not
affect precision. This involves more computations at the
server, compared to a version with a higher multiplicative
depth, but reduces the encryption load at the client, since
ciphertexts will be smaller. Moreover, we noticed that having
a redundancy in the stored ciphertexts (a separate ciphertext
for each column of the Hankel matrices) yields a better run
time than storing fewer ciphertexts (one ciphertext for all
the unique elements in the Hankel matrix) and processing

5453

them repeatedly to extract the relevant information. The main
difficulty in making the computations tractable is to astutely
pack the ciphertexts and order the products in order to reduce
depth, number of operations and storage.

In summary, the outline of the encrypted protocol is as
follows. We use the shorter notation H(u)t and H(y)t for
the corresponding block Hankel matrices at time t. Assume
without loss of generality that we shift the time axis to
the left by M + N , such that the trajectory concatenation
mentioned in Section III-B is performed before t = 0.
This will simplify the circuit depth expression. For further
simplicity, we consider diagonal cost matrices Q and R
(otherwise the multiplication by these matrices would require
more complicated encrypted operations).

For t = −M − N + 1 : 0, follow the solution for the
offline feedback solution, cf. Section VI.

For t ≥ 1, the following plaintexts and ciphertexts are
stored at the cloud: λy and Q encoded as ev0(λQ) :=
ev0

([
λy,1 . . . λy,pM q1 . . . qpN

])
, λu and R as

ev0(λR) := ev0(
[
λu,1 . . . λu,mM r1 . . . rmN

]
),

Ev0((M−1
t−1)ij) for j ≥ i, i.e., each entry on and above the

diagonal of M−1
t−1 is separately encrypted in a ciphertext,

Ev∗(coli(H(y)t))i∈{0,S+t−1}, Ev∗(coli(H(u)t))i{0,S+t−1},
i.e., each column of H(y)t and H(u)t, respectively, is sepa-
rately encrypted in a ciphertext, Ev0(yt), Ev0(ut), following
the same reasoning as in the last part of Section VI, and
Ev0(ȳt−1), Ev0(ūt−1). To avoid some masking operations,
the cloud also stores Ev∗((U

f
t)ij) for i ∈ {0, . . . ,m − 1}

and j ∈ {0, . . . , S + t− 1}.
Following (9)–(11), the cloud service performs the en-

crypted computations shown in the Appendix in equations
(15) and (16). The cloud obtains Ev∗(Dut) and Ev∗((Nut),
where Dut is the denominator and Nut the numerator of
ut = u∗,t[0:m−1]. To further reduce the total multiplicative
depth, the server asks the client to send back an encryption
of the inverse of the denominator: Ev0(1/Dut), so that the
computation at the next time step is started with denominator
1. From (15), (16), we obtain that the multiplicative depth
of computing the control input is given by:

d(Dut) = 2(t− 1) + 5, d((Nut) = 2(t− 1) + 7.

Considerations for continuous running. An important
aspect to be clarified is what happens after the multiplication
budget is exhausted. The options are:

(i) Restore the initial precollected Hankel matrices which
bypasses a refreshing step altogether. Advantages: no extra
computations needed. Disadvantages: this causes oscillations
in the control actions.

(ii) Stop adding new information to the matrices. Ad-
vantages: no extra computations needed. Disadvantages: the
multiplicative budget has to be large enough such that enough
samples are collected.

(iii) Pack the matrix into a single ciphertext as in (14)
(S′ = S+ t−1) and ask the client to refresh it. Advantages:
the server can continue collecting values for any desired
time, with no extra depth. Disadvantages: the client has to

decrypt, encrypt and send another ciphertext; the rotation
keys necessary for packing can occupy a lot of storage.

Ev0(M−1
t)=Ev0(

[
(M−1

t)00 . . . (M−1
t)S′S′

]
)

=

S′∑
i=0

S′∑
j=i

ρ
(

Ev∗(M
−1
t)ij�e0, iS

′− i(i−1)

2
+j
)
.

(14)

(iv) Bootstrap the ciphertext of M−1
t . The computation

advancements regarding the bootstrapping procedure suggest
that it is likely to locally resolve the refreshing step. Ad-
vantages: the server can continue collecting values for any
desired time without the client’s intervention. Disadvantages:
the initial multiplication budget has to be larger to also allow
for the bootstrapping circuit.

In the solution we implemented, we chose option (iii).
This gives us flexibility on the maximum multiplicative depth
of the circuit, which will now be 2(trefresh − 1) + 7, at
little extra cost for the client. Since M−1

t is symmetric,
we keep (S + t − 1)(S + t)/2 elements encrypted. The
number of ciphertexts the server can pack M−1

t into is
d(S + t − 1)(S + t)/ringDime. The client only has to
decrypt, re-encrypt and send back this number of ciphertexts.
The server then uses one extra level to perform the reverse
of (14) to unpack Ev0(M−1

t) into ciphertexts Ev0((M−1
t)ij).

These multiplications can be absorbed in the same initial
multiplicative depth.

Proposition 2: Assuming the usage of a semantically se-
cure leveled homomorphic encryption scheme, the encrypted
online data-driven control algorithm achieves privacy with
respect to the server.

The proof is similar to the proof of Proposition 1, since
the server only receives fresh encryptions of the private data.

VIII. NUMERICAL RESULTS

We considered a zone temperature control problem derived
from [32], with sampling time of Ts = 420 seconds. The
system parameters are: n = 4,m = 1, p = 1,M = 4, N =
10, T = 40. We add a zero mean Gaussian process noise with
covariance 0.001I and a zero mean Gaussian measurement
noise with covariance 0.01I. We choose the cost matrices and
regularization terms Q = I,R = 10−5I, λg = 1, λy = λu =
10. For the offline data collection, we assume a different
initial point than for the online computation, and randomly
sample the offline input trajectory so that the corresponding
output trajectory lies in the interval [12, 16]. The M,N and
T parameters mean that we start from 27 columns in the
Hankel matrices, which, due to noise, results in suboptimal
performance and slow convergence for the offline feedback
control–see Figure 1. We collect data online for 15 more time
steps, which means adding another 15 columns to the Hankel
matrices. Afterwards, we run the system with fixed gains.
Figure 1 shows the performance of the setpoint tracking with
these parameters.

We implemented1 the encrypted solutions proposed in this
paper using the PALISADE library [16]. We use a ring

1https://github.com/andreea-alexandru/private-data-driven-control

5454

0 200 400 600 800 1000 1200 1400

time(min)

17

17.5

18

18.5

19

19.5

20

20.5
y
(°

C
)

Offline

Online

Reference

Fig. 1: Tracking performance of the unencrypted online
versus offline feedback in the presence of small noise. The
performance is for one typical random sample for one day
of simulation. To make the comparison meaningful, we use
the same noise sequence for both schemes.

dimension of 212 and 21 moduli (for a refresh step after 8
collected samples). The resulting ciphertext modulus of a
fresh ciphertext is of 1060 bits. We chose this ring dimension
such that the computation is contained in the 8 GB of
RAM of a standard laptop with Intel Core i7 on which
the simulation was run using 8 threads. We note that this
toy-sized problem gives a security parameter of 47 bits,
according to the online estimator [30], which is not a security
parameter recommended in practice. For a typical security
parameter of 80 bits, a ring dimension of 215 is required.
For the fully secure implementation, we recommend using a
more powerful machine.

The run times for the encrypted computation of the online
feedback algorithm are given in Figure 2, where three differ-
ent phases are depicted. The offline time (for key generation
and encryption) for the whole simulation is 87 seconds.

The first online phase is the trajectory concatenation phase,
as described in Section III-B, from time step 0 to time
step t = M + N − 1 = 13, where the server computes
the encrypted control action only with the precollected data,
which is very efficient, despite computing on the maximum
number of moduli, resulting in a total computation time for
one time step of under 1.2 seconds.

The second phase is the online collection of new input-
output samples, which implies modifying the Hankel matri-
ces and computing the inverse matrix via the Schur com-
plement trick at every time step M−1

t from step 14. This
phase is also split in two parts depending on the refreshing
time. At the established refresh time (t = 20), the server
packs the matrix M−1

t into one ciphertext, sends it to the
client to re-encrypt it with the maximum number of moduli,
and unpacks it back into component-wise ciphertexts. This
justifies the increase in the client and server computation time
at step 21 compared to the previous time step. The substantial
increase in computation time from at 21 (308.8 seconds)
compared to step 14 (173.7 seconds) is given by the fact that
the server has to deal with more collected samples ciphertexts
than in the beginning of phase two. The computation time
decreases as the number of levels increases (the ciphertext

5 10 15 20 25 30 35

Time step

10
-2

10
-1

10
0

10
1

10
2

10
3

O
n

lin
e

 t
o

ta
l
ru

n
n

in
g

 t
im

e
s
 [

s
]

Client

Server

Ts

Fig. 2: Running times for the computations performed at the
client and the cloud server for the encrypted online control
algorithm. The plot is semi-logarithmic and the amounts of
time required by the client and the cloud server are stacked.
The maximum time required for the total computations for a
time step is less than the sampling time Ts = 420 seconds.

size decreases).
The third phase corresponds to the computations after

stopping the collection of new samples, which starts from
time step 29 and can go for the rest of the desired simulation
time. The third phase is more computationally intensive than
the first, because in the first phase, we use an offline gener-
ated diagonal packing with corresponding SIMD operations.
This packing is more expensive to achieve online, at the onset
of phase three, so we instead use less efficient matrix-vector
multiplications. Nevertheless, the running time required for
computing ut at one time step is around 25 seconds.

By scaling the M−1
0 matrix at the client and appropriately

modifying the computations so that this scaling does not
affect the result, we improve the precision of the encrypted
result. Specifically, we obtain a maximum magnitude of
0.012◦C and an average of 0.005◦C for the difference
between the unencrypted output and the encrypted output,
and 0.17 kWatts, respectively 0.07 kWatts, for the output,
during the online simulation from Figure 2. This difference is
introduced by the accumulation of errors due to the encrypted
computations. One can obtain bounds on these errors, but
these bounds are overly conservative. Increasing the plaintext
modulus offers a solution to precision increase.

IX. CONCLUSIONS AND FUTURE WORK

We proposed a privacy-preserving online data-driven con-
trol algorithm designed to be encryption-friendly, i.e., al-
low both accurate setpoint tracking and efficient encrypted
computations. We achieve this by choosing a regularized
convex formulation of the control optimization problem with
a closed form solution for the control input; this solution
can be computed using a low-depth arithmetic circuit, using
the Schur’s complement formula for matrix inversion. The
client encrypts its measurements with a leveled homomorphic
encryption scheme and sends them to a cloud server, which
returns the encrypted control input.

For future research, we aim to prove closeness of the
approximation problem that we proposed in Section III to the
classic LQR problem and to introduce hard constraints. We

5455

also note that the behavioral framework might not be the only
encryption-friendly method and we would like to explore
other methods as well, e.g. adaptive control techniques.
Finally, we plan to further optimize the encrypted code to
reduce the storage and amount of computations performed.

REFERENCES

[1] S. Kejriwal and S. Mahajan, “Smart buildings: How iot technology
aims to add value for real estate companies,” Deloitte Center for
Financial Services, 2016.

[2] J. Kim, C. Lee, H. Shim, J. H. Cheon, A. Kim, M. Kim, and
Y. Song, “Encrypting controller using fully homomorphic encryption
for security of cyber-physical systems,” IFAC-PapersOnLine, vol. 49,
no. 22, pp. 175–180, 2016.

[3] F. Farokhi, I. Shames, and N. Batterham, “Secure and private control
using semi-homomorphic encryption,” Control Engineering Practice,
vol. 67, pp. 13–20, 2017.

[4] M. Schulze Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo,
“Towards encrypted MPC for linear constrained systems,” IEEE Con-
trol Systems Letters, vol. 2, no. 2, pp. 195–200, 2018.

[5] A. B. Alexandru, M. Morari, and G. J. Pappas, “Cloud-based MPC
with encrypted data,” in Proceedings of the 57th Conference on
Decision and Control (CDC). IEEE, 2018, pp. 5014–5019.

[6] A. B. Alexandru and G. J. Pappas, “Encrypted LQG using labeled
homomorphic encryption,” in Proceedings of the 10th ACM/IEEE Intl.
Conference on Cyber-Physical Systems, 2019, pp. 129–140.

[7] J. Suh and T. Tanaka, “SARSA (0) reinforcement learning over fully
homomorphic encryption,” arXiv preprint arXiv:2002.00506, 2020.

[8] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disser-
tation, Department of Computer Science, Stanford University, 2009.

[9] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-LWE and security for key dependent messages,” in Intl. Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2011, pp. 505–524.

[10] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Annual Cryptology Conference. Springer, 2013,
pp. 75–92.

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Intl. Conference on the
Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[12] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” in Intl. Conference on the
Theory and Applications of Cryptographic Techniques. Springer,
2018, pp. 360–384.

[13] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for
approximate homomorphic encryption,” in Intl. Conference on the
Theory and Applications of Cryptographic Techniques. Springer,
2019, pp. 34–54.

[14] S. Halevi and V. Shoup, “Algorithms in HElib,” in Annual Cryptology
Conference. Springer, 2014, pp. 554–571.

[15] “Microsoft SEAL,” https://github.com/Microsoft/SEAL, Oct. 2019,
Microsoft Research, Redmond, WA.

[16] “PALISADE Lattice Cryptography Library (release 1.9.1),”
https://palisade-crypto.org/, Mar. 2020.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“TFHE: Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

[18] L. Ljung, System Identification: Theory for the User. Prentice Hall,
1999.

[19] P. Van Overschee and B. De Moor, Subspace identification for linear
systems: Theory–Implementation–Applications. Springer Science &
Business Media, 2012.

[20] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A
note on persistency of excitation,” Systems & Control Letters, vol. 54,
no. 4, pp. 325–329, 2005.

[21] C. De Persis and P. Tesi, “On persistency of excitation and formulas
for data-driven control,” in Proceedings of the 58th Conference on
Decision and Control (CDC). IEEE, 2019, pp. 873–878.

[22] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive
control: In the shallows of the DeePC,” in Proceedings of the 18th
European Control Conference (ECC). IEEE, 2019, pp. 307–312.

[23] J. Berberich, J. Köhler, M. A. Muller, and F. Allgower, “Data-driven
model predictive control with stability and robustness guarantees,”
IEEE Transactions on Automatic Control, 2020.

[24] C. Yu, L. Ljung, and M. Verhaegen, “Identification of structured state-
space models,” Automatica, vol. 90, pp. 54–61, 2018.

[25] I. Markovsky and P. Rapisarda, “Data-driven simulation and control,”
Intl. Journal of Control, vol. 81, no. 12, pp. 1946–1959, 2008.

[26] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge University Press, 2004.

[27] H. J. van Waarde, C. De Persis, M. K. Camlibel, and P. Tesi,
“Willems fundamental lemma for state-space systems and its extension
to multiple datasets,” IEEE Control Systems Letters, vol. 4, no. 3, pp.
602–607, 2020.

[28] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS
variant of approximate homomorphic encryption,” in Intl. Conference
on Selected Areas in Cryptography. Springer, 2018, pp. 347–368.

[29] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of
the BFV homomorphic encryption scheme,” in Cryptographers Track
at the RSA Conference. Springer, 2019, pp. 83–105.

[30] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” Journal of Mathematical Cryptology, vol. 9, pp.
169–203, 2015, https://lwe-estimator.readthedocs.io/en/latest.

[31] F. Zhang, The Schur complement and its applications. Springer
Science & Business Media, 2006, vol. 4.

[32] A. W. M. van Schijndel, “Integrated heat air and moisture modeling
and simulation,” Ph.D. dissertation, T. U. Eindhoven, 2007.

APPENDIX

The cloud service locally obtains the quantities in (15)
and (16). EvalSum sums the slots inside a ciphertext. Let
vt := (mtM

−1
t−1)ᵀ and S′ := S + t− 1, for t ≥ 1.

Ev0(ȳt)=ρ(Ev0(ȳt−1), p)+ρ(Ev0(yt),−p(M−1))

Ev0(ūt)=ρ(Ev0(ūt−1),m)+ρ(Ev0(ut),−m(M−1))

Ev0(colS′H(y)t)=ρ(colS′−1H(y)t, p)+

+ρ(Ev0(yt),−p(M+N−1)) (15)
Ev0(colS′H(u)t)=ρ(colS′−1H(u)t,m)+

+ρ(Ev0(ut),−m(M+N−1))

Ev∗((U
f
t)iS′)=ρ(Ev0(colS′H(u)t),mM+i), i∈{0, . . . ,m−1}

Ev0(ȳt, rt)=Ev0(ȳt)+ρ(Ev0(rt),−pM).

Ev∗(µt)=EvalSum(Ev0(colS′H(y)t�ev0(λQ)�
�Ev0(colS′H(y)t)+Ev0(colS′H(u)t�ev0(λR)�
�Ev0(colS′+1H(u)t)+λg

Ev∗(mt)i=EvalSum(Ev0(colS′H(y)t�ev0(λQ)�
�Ev0(coliH(y)t)+Ev0(colS′H(u)t)�ev0(λR)�
�Ev0(coliH(u)t), i∈{0, . . . , S′−1}

Ev∗(Dut)=Ev∗(mS,t)=Ev∗(µt)−

−
S′−1∑
i=0

S′−1∑
j=0

Ev∗(M
−1
t−1)ij�(Ev∗(mt)i�Ev∗(mt)j)

Ev∗(vt)j=

S′−1∑
i=0

Ev∗(mt)i�Ev∗(M
−1
t−1)ji (16)

Ev∗(vtv
ᵀ
t)ij=Ev∗(vt)i�Ev∗(vt)j , i, j∈{0, . . . , S′−1}

Ev∗(NM−1
t)=

[
Ev∗(mS,tM

−1
t−1+vtv

ᵀ
t Ev∗(−vt)

Ev∗(−vᵀ
t) 1

]
Ev0(zt)i=e0�EvalSum(Ev0(coliH(y)t)�ev0(λQ)�
�Ev0(ȳt, rt)+Ev0(coliH(u)t)�ev0(λR)�Ev0(ūt))

i∈{0, . . . , S′}

Ev∗(Nut)=

m−1∑
k=0

ρ
(S′∑

i=0

S′∑
j=0

(
Ev∗(U

f
t)ki�Ev0(zt)j

)
�

�Ev∗(NM−1
t)ij ,−k

)
=Ev∗((U

f
tNM−1

t zt)[0:m−1]).

5456

