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Abstract— Distributed systems are ubiquitous in present-day
technologies like smart cities. Such applications require decen-
tralized control, which reduces the load on a single central
party, but requires communication and data sharing between
the participating agents. However, agents might not trust their
peers with their private data. We propose secure multi-party
computation schemes that ensure the private computation of
the control updates of each agent, without leaking any other
information about the states and controls of their neighbors.
To this end, we make use of homomorphic encryption and
private sum aggregation schemes. We analyze the conditions
such that a dishonest agent cannot observe the rest of the
network. Finally, we present implementations of the proposed
schemes and showcase their efficiency.

I. INTRODUCTION

The recent drive towards increasing interconnectivity of
systems has determined more and more systems to be
operated using distributed control schemes. Examples such
as smart grids, water-supply systems, robot swarms, or
intelligent transportation systems benefit from this distributed
computing framework. Applying distributed but cooperative
controllers requires communication between the various sub-
systems or agents. In the resulting networked control system,
sensible data is transmitted via possibly public networks
and processed at neighboring agents, which can pose a
privacy threat. Recent examples of data leakage and abuse
in (critical) infrastructures, such as disturbing the normal
functionality of power plants or inferring people’s presence at
home from smart meter measurements, have drawn attention
to the risks of sharing data in the clear. The challenge thereby
is to solve the conflict of ensuring individual privacy while
simultaneously allowing for cooperation.

Secure communication between agents can be achieved
using standard (symmetric) encryption schemes, such as AES
or TLS. However, if the agents’ individual data should not
be available to their peers, to avoid the previously mentioned
exploitations, more sophisticated cryptosystems are required.
We will focus on solutions that employ homomorphic en-
cryption schemes, which enable carrying out elementary
mathematical operations on encrypted data [1]–[3].

A. Related work

Homomorphic encryption forms the basis for many recent
cloud-based encrypted control schemes such as [4]–[9].
However, encrypted distributed control calls for different
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techniques than encrypted cloud-based control. For instance,
different keys are required for different agents. Recent works
on encrypted consensus [10]–[12], on encrypted distributed
optimization [13]–[16] and in smart grid encrypted data
aggregation [17]–[19] give insights about homomorphically
encrypted distributed computation, but treat different aspects
than the ones we are interested in for this paper.

It has recently been shown in [20] that encrypted cooper-
ative control is capable of solving the privacy conflict using
homomorphic encryption and allows secure interaction be-
tween the participating agents. However, while [20] demon-
strates that private cooperative control is realizable, their
proposed encrypted control scheme reveals more information
about some participants’ private local data than required to
evaluate the local control laws. This results in a privacy leak
that is difficult to address with existing approaches.

B. Our contribution

This paper designs a scheme that we call private control
update aggregation (pCUA), which ensures that an agent
learns nothing apart from the unconcealable information, i.e.,
the sum of contributions from its neighbors. As a corollary,
we close the identified privacy leak of the scheme in [20].
More specifically, the values of the states, control actions
and control gains of each agent are hidden from the rest of
the participants. To this end, we design a private weighted
sum aggregation (pWSA) scheme with secret weights. The
solution relies on secret sharing and additively homomorphic
encryption. This scheme involves an offline centralized step,
to which we also propose an online fully distributed alterna-
tive. We implement the proposed solution and showcase its
efficiency. Finally, we analyze the observability of the system
from the perspective of malicious agents.

Organization. The private cooperative control problem
statement and goal are described in Section II. In Section III,
we describe a pWSA scheme where neither the aggregator
nor the agents know the weights, yet the aggregator is capa-
ble of obtaining the weighted sum of the contributions of the
agents. Section IV shows how to obtain the secrets needed
for this scheme in a distributed way. In Section V, we show
how to obtain the pCUA scheme from the pWSA scheme.
Then, in Section VI, we compare the unaggregated case and
the aggregated case in terms of observability. Finally, in
Section VII, we discuss the implementation of the solution
and the numerical results and conclude in Section VIII.

C. Notation

We use bold-face lower case for vectors, e.g. x, and bold-
face upper case for matrices, e.g. A. For a positive integer
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n, let [n] := {1, 2, . . . , n}. N denotes the set of non-negative
integers, Z denotes the set of integers, Z/NZ denotes the
additive group of integers modulo N and (Z/NZ)∗ denotes
the multiplicative group of integers modulo N . λ denotes the
security parameter. E(x) denotes an encrypted scalar value
x. An encryption of a matrix A is denoted by E(A) and
signifies the element-wise encryptions of its elements. φ(N)
denotes Euler’s totient function and for N = pq, with p, q
primes, φ(N) = (p− 1)(q − 1).

II. PROBLEM STATEMENT

We consider a control scheme tailored for multi-agent
systems with linear dynamics. Specifically, consider a system
with M agents that obey the local dynamics:

xi(t+ 1) = Aixi(t) + Biui(t), xi(0) = xi,0, (1)

with xi ∈ Rni and ui ∈ Rmi , for every i ∈ [M ]. Assume
further that the agents are part of a simple, connected, fixed
and undirected communication graph G = (V, E), with the
vertex V = [M ] and the edge set E ⊆ V×V . An edge (i, j) ∈
E specifies that agent i can communicate with agent j, in
which case we say agent i and agent j are neighbors.

Following the cooperative structured control described
in [20], we use the local control laws to stabilize the systems:

ui(t) = Kiixi(t) +
∑
j∈Ni

Kijxj(t), (2)

where Ni := {j ∈ V|(i, j) ∈ E} represents the set of
neighbors of agent i. The local control laws (2) result from
the design of a centralized linear controller of the form: u1(t)

...
uM (t)

 =

K11 . . . K1M

...
. . .

...
KM1 . . . KMM


 x1(t)

...
xM (t)

 (3)

that takes into account the structural constraints of the
communication graph by requiring Kij = 0 whenever j /∈
Ni ∪ {i}. A method for the computation of such structured
feedback matrices can, for instance, be found in [21].

A. Privacy requirements

Each agent i ∈ V has to compute its local control action,
based on its local state and the states of its neighbors,
according to (2), i.e., it locally aggregates the contributions
of its neighbors j ∈ Ni. Under privacy requirements, we call
such a scheme a private control update aggregation (pCUA),
which we would like to achieve the following:
• agent i can learn only its local state and control action

xi(t) and ui(t) at each time period, and nothing else about
xj(t),Kij , including partial information like Kijxj(t);

• without knowing agent i’s aggregator capability, the other
agents cannot learn anything about the private states and
control gains of the other participants in the computation;

• if agent i colludes with a subset of the agents, it inevitably
learns the sum of the contributions of the remaining honest
agents, but learns nothing more about their private data.

The adversarial model we consider is honest but curious,
which means that an adversary wants to infer the private data
of the honest agents, without diverging from the established
protocol. Such a model is reasonable since all agents are
interested in obtaining the correct result of the computation.

Furthermore, we require the pCUA scheme to be efficient:
• the control action ui(t) has to be privately computed in

less time than the sampling period.
Shortcomings of the previous scheme. Roughly speak-

ing, [20] introduces a private computation and exchange of
the “input portions” from the local control laws (2):

vij(t) := Kijxj(t) ∈ Rmi (4)

that reveal neither the exact local state xj nor the local
controller matrix Kij to agent i, but can at least leak the
relative rate of decrease/increase of some signals of its
neighbors over multiple time steps.

However, in order to compute the local control action ui,
agent i does not require access to the individual vij . In fact,
if we want to ensure privacy of the data that is unknown to
agent i, the best we can do is to make agent i to only be
able to compute the “aggregated portions”:

ui(t)− vii(t) = vi,Ni(t) :=
∑
j∈Ni

vij(t). (5)

Providing vi,Ni instead of vij , without revealing any
information about vij (for |Ni| ≥ 2) is non-trivial. There has
been substantial work dealing with the underlying problem of
private sum aggregation. The combination of these methods
with the encrypted control scheme from [20] is likewise
demanding due to the requirement that the control gains are
concealed from all the agents.

For simplicity, in the schemes in Sections III and IV, we
assume agent i is the aggregator – computes the local control
update – and agents j, for j ∈ Ni, are the other participants.
Moreover, we consider states and control gains to be scalars
xj(t), kij . Then, in Section V, we show how each agent calls
the scheme for their own local control update and how to deal
with the fact that and control actions are vectors.

III. PRIVATE WEIGHTED SUM AGGREGATION

Private sum aggregation (pSA) allows an untrusted ag-
gregator to compute the sum of the private data contributed
by some users, without learning the individual contributions.
pSA was introduced in [22], [23] and improvements have
been proposed, e.g., in [24]–[26].

Shi et al. [22] also introduced a formal definition of
aggregator obliviousness that pSA schemes have to satisfy.
Essentially, the privacy notion of aggregator obliviousness
states that the aggregator is not allowed to learn anything
more than the aggregate value of the contribution of the
participants, for all time steps. Moreover, if an adversary
corrupts both the aggregator and some participants, it is
not capable of learning anything more than the aggregate
contribution of the honest participants.

Private sum aggregation is of independent interest and
has countless applications in both centralized and distributed

7197



systems. In particular, for the cooperative control scheme
we discussed in Section II, if agent j also had access to the
associated control gain kij , i.e., the control portion vij(t)
could be computed in plaintext at agent j, we would use
pSA. In this case, the private sum aggregation problem can
be described as follows: let there be |Ni| participants and
an aggregator i. In every time step, denoted by t ∈ N,
each participant j ∈ Ni ∪ i holds a private value xj(t)
and kij . Define vij(t) := kijxj(t). The aggregator wants
to compute the aggregate statistics over the private values,
specifically: ui(t) =

∑
j∈Ni

vij(t) + vii(t). However, since
the control gains are unknown to the agents, we require a
private weighted sum aggregation scheme.

A private weighted sum aggregation (pWSA) scheme for
weights unknown to all participants is composed of algo-
rithms pWSA = (Setup,Enc,AggrDec). We will describe
them in detail in Section III-B and show that they satisfy the
privacy definition in Section III-A.

A. Formal privacy definition

We give a description of the privacy definition from
Section II-A as a typical cryptographic game between an
adversary and a challenger, where the adversary A can cor-
rupt agents. The security game pWSAO (private Weighted
Sum Aggregator Obliviousness) is as follows:
Setup. The challenger runs the Setup algorithm and gives
the public parameters prm to the adversary.
Queries. The adversary can submit compromise queries and
encryption queries that are answered by the challenger. In the
case of compromise queries, the adversary submits an index
j ∈ Ni ∪ i to the challenger and receives skj , which means
the adversary corrupts agent j. The set of the corrupted
agents is denoted by C. In the case of encryption queries,
the adversary is allowed one query per time step t and per
agent j ∈ Ni. The adversary submits (j, t, kaij , xj(t)) and
the challenger returns Enc(prm, skj(k

a
ij), t, xj(t)). The set

of participants for which an encryption query was made by
the adversary at time t is denoted by E(t).
Challenge. The adversary chooses a specific time step t∗. Let
U∗ denote the set of participants that were not compromised
at the end of the game and for which no encryption query
was made at time t∗, i.e., U∗ = (Ni ∪ i) \ (C ∪ E(t∗)).
The adversary specifies a subset of participants S∗ ⊆ U∗.
At this time t∗, for each agent j ∈ S∗ \ i, the adver-
sary chooses two plaintext series x0j (t

∗) and x1j (t
∗), along

with k∗,0ij and k∗,1ij , and sends them to the challenger. If
S∗ = U∗ and i /∈ S∗, i.e., the aggregator has been
compromised, then, the values submitted by the adversary
have to satisfy

∑
j∈S∗ k

∗,0
ij x

0
j (t
∗) =

∑
j∈S∗ k

∗,1
ij x

1
j (t
∗). The

challenger flips a random bit b ∈ {0, 1} and computes
Enc(prm, skj(k

∗,b
ij ), t, xbj(t

∗)), ∀j ∈ S∗. The challenger then
returns the ciphertexts to the adversary.
Guess. The adversary outputs a guess b′ ∈ {0, 1} on whether
b is 0 or 1. The advantage of the adversary is defined as:

AdvpWSAO(A) :=

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .

The adversary wins the game if it correctly guesses b.
Definition 1: A scheme pWSA = (Setup,Enc,

AggrDec) achieves weighted sum aggregator obliviousness
if no probabilistic polynomial-time adversary has more than
negligible advantage in winning this security game:

AdvpWSAO(A) ≤ η(λ). �
B. Solution

The neighbors of agent i do not have access to the plaintext
contribution they have to send to agent i: the control gain
kij should be private from all participants (encrypted), so
neighbor j has to find a way to send an encryption of the
masked product kijxj(t) to agent i, and the latter still has
to decrypt the result. This suggests that:
• kij should be encrypted with an additively homomorphic

encryption that agent i knows how to decrypt;
• the layer of encryption introduced in Enc should be

compatible with the inner additively homomorphic layer;
• agent i should not be able to decrypt the individual

contributions it receives from its neighbors, despite having
the secret key of the homomorphic encryption scheme.
To achieve the solution, for the outer layer of encryption,

we can use one-time pads, which are compatible with the
additively homomorphic property. For the inner layer of
encryption, we need an asymmetric additive homomorphic
encryption scheme. We will instantiate it with the Paillier
cryptosystem [1], due to its simplicity and popularity. More
details about Paillier’s cryptosystem can be found in Ap-
pendix A. We will denote the Paillier encryption primitive
by E(·) and the decryption primitive by D(·).

Hence, the steps of the algorithms in pWSA are:
• Setup(1λ,Ni, {kij}j∈Ni∪i, T ): given security parameter
λ, get a pair of Paillier keys (pk, sk): generate two equal-
size prime numbers p, q and set N = pq such that
blog2Nc = λ, gcd(φ(N), N) = 1. Set g = 1 +N and:

pk = (g,N), sk =
(
φ(N), φ(N)−1 mod N

)
.

For every t ∈ [T ], generate |Ni|+ 1 shares of zero:∑
j∈Ni∪i

sj(t) = 0 mod N, sj(t) ∈ (Z/NZ)∗.

Denote by sj the vector of sj(t) for all t ∈ [T ]. Encrypt
kij for i 6= j using pk: E(kij) = gkijrN mod N2, for r
randomly sampled from (Z/N2Z)∗. Finally, set prm =
(λ, pk), skj = (sj ,E(kij)) and ski = (sk, si, kii).

• Enc(prm, skj , t, xj(t)): for xj(t) ∈ Z/NZ, compute:

cj(t) = E(kij)
xj(t)E(sj(t)) = E(kijxj(t) + sj(t)).

• AggrDec(prm, ski, t, {cj(t)}j∈Ni
): compute V (t) =∏

j∈Ni
cj(t) mod N2 and then set:

ui(t) =
(
D(V (t)) + si(t)

)
mod N + kiixi(t).

An assumption that we make for the rest of the paper is:
Assumption 1: For each time step t, xj(t), kij(t), vij(t),

ui(t) ∈ Z/NZ, ∀i, j ∈ V , i.e., there is no overflow. �
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Correctness: D(V (t)) =
∑
j∈Ni

kijxj(t) + sj(t) follows
from the correct execution of Paillier operations in Enc.
Then, D(V (t)) + si(t) =

∑
j∈Ni

kijxj(t) mod N from the
generation of shares of zero. After adding kiixi(t), agent i
obtains the desired control action ui(t) as specified in (2).

Theorem 1: The pWSA scheme achieves weighted sum
aggregator obliviousness w.r.t. Definition 1. �

Proof: We are going to treat two cases: I, the adversary
does not corrupt the aggregator and II, the adversary corrupts
the aggregator:

Pr[b′ = b] =
1

2
Pr[b′ = b|i /∈ C] +

1

2
Pr[b′ = b|i ∈ C].

A function η : Z≥1 → R is called negligible if for all
c ∈ R>0, there exists nc ∈ Z≥1 such that for all integers
n ≥ nc, we have |η(n)| ≤ n−c.

We will consider the stronger case where S∗ = U∗; the
weaker case where S∗ ⊆ U∗ easily follows.
I. i /∈ C. From the compromise queries, the adversary holds
the following information {λ, pk, {sj(t)}j∈C , {kij}j∈C}t∈[T ]

and
∑
j∈U sj(t) = −

∑
j∈C sj(t), for all t ∈ [T ]. From the

encryption queries at time t, the adversary knows {cj(t) =
E(kaijxj(t)) + sj(t))}j∈E(t). Then, the adversary chooses
t∗ ∈ T and a series of {x0j (t∗)}j∈U∗ and {x1j (t∗)}j∈U∗ ,
along with k∗,0ij and k∗,1ij and receives from the challenger
{cj(t∗) = E(k∗,bij x

b
j(t
∗)) + sj(t

∗))}j∈U∗ .
Because the adversary doesn’t have the secret key of the

Paillier scheme and does not have the individual secrets of
the uncorrupted agents:

Pr[A breaks Paillier scheme] ≤ η1(λ),

Pr[A breaks secret sharing] ≤ η2(λ),

Pr[b′ = b|i /∈ C] ≤ 1

2
+ η1(λ)η2(λ),

(6)

where η1(λ), η2(λ) are negligible functions, according to
Theorems A.1 and A.2.
II. i ∈ C. From the compromise queries, the adver-
sary holds the following information {λ, pk, {sj(t)}j∈C ,
{kij}j∈C , sk}t∈[T ], and

∑
j∈U sj(t) = −

∑
j∈C sj(t), for

all t ∈ [T ]. From the encryption queries, and after using
sk to decrypt, the adversary knows {pj(t) = kaijxj(t) +
sj(t)}j∈E(t). Then, the adversary chooses t∗ ∈ T and a
series of {x0j (t∗)}j∈U∗ and {x1j (t∗)}j∈U∗ , along with k∗,0ij
and k∗,1ij , such that

∑
j∈U∗ k

∗,0
ij x

0
j (t
∗) =

∑
j∈U∗ k

∗,1
ij x

1
j (t
∗)

and receives from the challenger {cj(t∗) = E(k∗,bij x
b
j(t
∗)) +

sj(t
∗)}j∈U∗ . The adversary uses the secret key of the Paillier

scheme to decrypt the individual ciphertexts and obtains
pj(t

∗) = k∗,bij x
b
j(t
∗) + sj(t

∗), for j ∈ U∗. Because the
secret shares of zero are different for each time t 6= t∗,
the adversary cannot infer information about the challenge
query from the previous encryption queries.

Then, the probability that the adversary wins is the prob-
ability that the adversary breaks secret sharing:

Pr[A breaks secret sharing] ≤ η2(λ),

Pr[b′ = b|i ∈ C] ≤ 1

2
+ η2(λ).

(7)

From (6) and (7): AdvpWSA(A) ≤ η2(λ).
The above scheme is appealing due to its simplicity,

but involves demanding communication, because different
secret shares of zero are required at every time step t
for all the neighbors of agent i. The Setup is executed
by an incorruptible trusted third party, called dealer. This
dealer cannot be online at every time step to distribute the
shares because, otherwise, this party could act as a trusted
centralized controller. A more reasonable assumption is that,
prior to the online computations, the dealer computes the
shares for T time steps and sends them to the agents, who
have to store them. Alternatively, we also offer a solution
to generate the secret shares of zero in a distributed way,
without the need of a trusted third party.

IV. DISTRIBUTED GENERATION OF ZERO SHARES

Assume each agent knows the agents that are two hops
away from itself. The scheme for distributedly generating
shares of zero for the update computed at agent i for time t
has the following steps:
1) At time t − 1, each agent j ∈ Ni ∪ i sends shares of

zero σijl(t) ∈ (Z/NZ)∗ to itself and to the agents in the
intersection of its neighbors and the neighbors of agent i:∑

l∈(Nj∪j)∩(Ni∪i)

σijl(t) = 0 mod N. (8)

2) At time t, each agent j ∈ Ni ∪ i sums its own share and
the shares it received meant for the aggregation at i:

sij(t) :=
∑

l∈(Nj∪j)∩(Ni∪i)

σilj(t). (9)

From (8), it is clear that:∑
j∈Ni∪i

∑
l∈(Nj∪j)∩Ni

σijl(t) = 0 mod N.

Then, we confirm that we obtained shares of zero for agent i
and j ∈ Ni: ∑

j∈Ni∪i
sij(t) = 0 mod N.

For the centralized solution of creating shares of zero
considered in Section III-B, the privacy of one agent j ∈
Ni ∪ i is guaranteed as long as the number of colluding
agents is strictly less than |Ni ∪ i| − 1 (otherwise the share
of agent j can be computed from the shares of the colluding
agents). For the decentralized solution, the privacy of one
agent j ∈ Ni ∪ i is guaranteed as long as the number of
colluding agents is strictly less than |(Nj ∪ j) ∩ (Ni ∪ i)|.
Hence, this scheme is more robust the more neighbors an
agent has. At the same time, the more neighbors an agent
has, the larger the number of messages it sends and receives.

If each agent is sufficiently connected (has a vertex degree
larger than a desired threshold), the above observation does
not represent a problem. On the other hand, if the agents are
not sufficiently connected, we can enforce dummy connec-
tions such that each agent reaches a desired vertex degree,
by connecting them to neighbors of the aggregator agent.
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Furthermore, the bandwidth overhead can be reduced if,
instead of sending the full secret σ ∈ (Z/NZ)∗, the agents
send only a smaller seed τ ∈ Z/wZ, w << N for
a pseudorandom generator function (e.g. a hash function)
H : Z/wZ→ (Z/NZ)∗, that is publicly known. The above
scheme can be modified as follows:
1) At time t − 1, each agent j ∈ Ni ∪ i generates random

seeds for each agent l ∈ Nj ∩ (Ni ∪ i): τ ijl(t) ∈ Z/wZ,
and computes for itself:

σijj(t) = −
∑

l∈Nj∩(Ni∪i)

H
(
τ ijl(t)

)
mod N.

2) At time t, each agent j ∈ Ni ∪ i sums the outputs of the
hash function on the seeds it received from its neighbors
that participated in the computation and its own share:

sij(t) :=
∑

l∈Nj∩(Ni∪i)

H
(
τ ilj(t)

)
+ σijj(t). (10)

V. CONTROL UPDATE AGGREGATION SCHEME

We now show how to apply the weighted sum aggregation
scheme, defined for scalars, in our control scenario in order to
obtain a private control update scheme. The states and control
actions are vectors, and the control gains are matrices, hence
the algorithms in pWSA have to be run multiple times.

Consider the private control update aggregation scheme
pCUA = (SetuppCUA, EncpCUA,AggrDecpCUA):
• SetuppCUA(1λ,V, E ,A,B, cost, T ): The dealer generates

the control gain K as in (3) using A,B and a cost. For
every agent i ∈ V , run Setup and generate a pair of keys
pki = (gi, Ni), ski =

(
φ(Ni), φ(Ni)

−1 mod Ni
)
. Denote

by pk the vector of all public keys. For every t ∈ [T ],
generate with Setup mi sets of shares of zero:∑
j∈Ni∪i

skij(t) = 0 mod Ni, s
k
ij(t) ∈ (Z/NiZ)∗, ∀k ∈ [mi].

Denote by Sij the matrix of ski,j(t) ∀t ∈ [T ] and k ∈ [mi].
Encrypt Kji for i 6= j using pki, for j ∈ Ni. Finally, set
prm = (λ,pk), ski = (ski,Kii,Sii,E(Kji),Sj∈Ni,i).

• EncpCUA(prm, ski, t,x(t)): For each i ∈ V and j ∈ Ni,
set, for each k ∈ [mi], agents j compute:

cki,j(t) =

n∏
l=1

Enc
(
prm, (skij(t),K

k,:
ij ), t,xlj(t)

)
= E(Kk,:

ij xj(t) + skij(t)).

Denote the vector of ckij(t) for all k ∈ [mi] as cij(t).
• AggrDecpCUA(prm, ski, t, {cij(t)}i,j∈Ni

): For i ∈ V:

uki (t) = AggrDec(prm, (skii(t),K
k,:
ii ), t, {ckij(t)}j∈Ni)

=
∑
j∈Ni

Kk,:
ij xj(t) + Kk,:

ii xi(t).

In a pWSAO security game, the adversary can also corrupt
other agents j /∈ Ni∪ i, but this brings no extra information:
the games are independent for different local control update
aggregations because the keys are different and independent.
Hence, the security of the pCUA scheme follows from the
composition of the pWSA schemes for each agent.

VI. OBSERVABILITY ANALYSIS

This section motivates the benefits of aggregation for the
privacy of the agents from a system-theoretic point of view.

A. Available information without aggregation

In the encrypted control scheme [20], agent i has access
to the input portions vij(t) of all neighboring agents j ∈ Ni.
Thus, it can use (4) and stored data to estimate the matrices
Kij or the neighboring states xj(t). Under the assumption
that mi ≤ ni, the corresponding system of equations:(

vij(0) . . . vij(t)
)

= Kij

(
xj(0) . . . xj(t)

)
(11)

is underdetermined for every t. However, taking
application-related restrictions on Kij and xj into account,
it might be possible to reconstruct the constant matrix Kij .
Moreover, especially for systems with similar agents, such
as robot swarms, agent i might obtain information about
the dynamics of agent j in terms of Aj and Bj . The ability
to reconstruct xj from observations vij given Kij , Aj ,
and Bj then becomes an observability problem. In fact,
observing xj requires full rank of the observability matrix:

Vij :=

 KijA
0
j

...
KijA

nj−1
j

 .

B. Available information with aggregation

In the aggregated case described in Section III, less data is
available to agent i. The system of equations (11) becomes:(
vi,Ni

(0) . . . vi,Ni
(t)
)

= Ki,Ni

(
xNi

(0) . . . xNi
(t)
)
,

with Ki,Ni
:=
(
Kij1 . . . Kij|Ni|

)
, xNi

:=

 xj1
...

xj|Ni|

 ,

and Ni = {j1, . . . , j|Ni|}. For |Ni| > 1, the degree of
freedom here is significantly higher than in (11). Still, it
might again be possible to infer the constant matrix Ki,Ni .
In addition, agent i might know the neighboring dynamics:

ANi
:= blkdiag(Aj1 , . . . ,Aj|Ni|

).

However, the observability of xNi
now requires full rank of:

Vi,Ni :=

 Ki,Ni
A0
Ni

...
Ki,Ni

A
nj−1
Ni

 .

It is then straightforward to obtain the following result.
Lemma 1: Having full rank of Vi,Ni

implies full rank of
Vij for every j ∈ Ni. �

Lemma 1 states that observability in the aggregated case
implies observability in the unaggregated case. In other
words, observability in the aggregated case is less likely,
which increases the privacy of the agents. We omit a formal
proof due to space restrictions. We stress, however, that:

Ki,Ni
Ak
Ni

=
(
Kij1A

k
j1

. . . Kij|Ni|
Ak
j|Ni|

)
,
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in combination with an analysis of the |Ni| column-blocks of
Vi,Ni and the Cayley-Hamilton theorem leads to Lemma 1.

Note that the converse statement of Lemma 1 is, in
general, not true.

VII. NUMERICAL EXAMPLES

As usual when operating with encryption schemes defined
on groups of modular residues, we need to use a fixed-point
representation scheme in order to quantize the real values and
encode them into integers. The effect of this quantization on
the cooperative control scheme is described in [20]. In the
simulations, we choose a representation on l = 64 bits: 32
integer bits and 32 fractional bits, which makes the quantiza-
tion errors negligible. We also choose all the Paillier moduli
to have 1024 bits. This ensures Assumption 1, i.e., all values
will be represented on fewer bits than mini∈[M ] logNi.

For illustration purposes, we consider a network of 50
agents, with each agent having local states of dimension 4
and local control inputs of dimension 2. We simulate pCUA
for various values of the average node degree in the net-
work, obtained by varying the probability of drawing edges
between agents. Simulations were run in Python 3 on a 2.2
GHz Intel Core i7 processor.

Figure 1 shows the online running times (averaged over
500 instances) for the local computation at each agent in
a time step using the scheme described in Section III-
B. The computation times are of the order of at most
tens of milliseconds for all neighbor degrees considered.
However, the offline setup phase becomes slower as the
average number of neighbors and time steps increase; the
offline share generation ranges from 16 to 83 seconds for
the average degree of 4 to 23 agents for 100 time steps.

If the offline phase computed for a large number of time
steps is slower than how long it will take to actually execute
those time steps (for example when the sampling time is very
small), it is better to have the agents compute their shares
of zero online. Figure 2 shows the running times (averaged
over 500 instances) for the local computation at each agent
in a time step using the scheme described in Section IV
jointly with the scheme from Section III-B. As expected, the
execution times increased roughly tenfold, but the scheme is
still competitive time-wise. Moreover, in the offline phase,
only one set of shares of zero is now computed (to be used
in the first time step), ranging from 0.7 to 1.4 seconds.

VIII. CONCLUSIONS

The main contributions of this work are the following.
We proposed a private weighted sum aggregation scheme
with secret weights, that can be used to achieve the private
control update aggregation scheme, where each agent acts
as an aggregator for the contributions of its neighbors.
We gave a formal privacy proof of the scheme, using the
information-theoretic privacy of secret sharing and the se-
mantic security of the additively homomorphic cryptosystem.
We also proposed a method for generating the secrets in
a distributed way, rather than by a third party. Finally, we
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Fig. 1. Average running times for the pCUA scheme with the steps
described in Section III-B on a network of 50 agents. The average degree
of the network is given on the x axis, while the minimum and maximum
degrees in the network are shown on the plot.
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Fig. 2. Average running times for the pCUA scheme with the steps
described in Section IV on a network of 50 agents. The average degree
of the network is given on the x axis, while the minimum and maximum
degrees in the network are shown on the plot.

provided numerical results for the schemes for various con-
nectivity degrees of a network and showed their efficiency.

The proposed scheme achieves the desired privacy goal,
but generates secret shares of zero at every time step. We will
investigate schemes such as in [26] with two secret keys but
only one zero share for the whole period of time.

APPENDIX

A. Additively homomorphic encryption

Consider the additive group of integers modulo N , Z/NZ,
where N = pq is a large modulus composed of two
prime numbers of equal bit-length, p and q, such that
gcd(φ(N), N) = 1. The order of Z/NZ is φ(N) =
(p − 1)(q − 1). Now consider the multiplicative group of
integers modulo N2, (Z/N2Z)∗. The order of (Z/N2Z)∗ is
Nφ(N). An important subgroup of (Z/N2Z)∗ is:

ΓN :={(1 +N)α mod N2|α ∈ {0, . . . , N − 1}}
={1 + αN |α ∈ {0, . . . , N − 1}},

(12)

where the equality follows from the binomial theorem:
(1+N)α = 1+αN mod N2. Computing discrete logarithms

7201



in ΓN is easy [1], [24]: given x, y ∈ ΓN , we can find β such
that y = xβ mod N2 by β = (y − 1)/(x− 1) mod N .

Another important subgroup in (Z/N2Z)∗ is:

GN :={xN mod N2|x ∈ (Z/NZ)∗}. (13)

GN has order φ(N). Computing discrete logarithms in GN
is as hard as computing discrete logarithms in (Z/NZ)∗ [24].

We also have the modular equalities for x ∈ (Z/N2Z)∗:

xφ(N) = 1 mod N, xNφ(N) = 1 mod N2. (14)

The Paillier scheme is defined using the previously de-
scribed concepts. Specifically, the plaintext space is Z/NZ
and the ciphertext space is (Z/N2Z)∗. The public key is
(g,N), where g is usually selected to be 1 + N , and the
secret key

(
φ(N), (φ(N))−1 mod N

)
. The encryption is:

E(x) = gxrN mod N2,

where r is sampled uniformly at random from (Z/N2Z)∗.
For a ciphertext c ∈ (Z/N2Z)∗, decryption uses equa-
tions (12) and (14):

D(c) = (cφ(N) − 1)/N · φ(N)−1 mod N.

Thanks to the definition of the encryption primitive, the
Paillier scheme allows for homomorphic additions and mul-
tiplication by plaintexts, as follows:

D
(
E(x) · E(y)

)
= D

(
E(x+ y)

)
= x+ y mod N

D
(
(E(x))y

)
= D

(
E(xy)

)
= xy mod N.

Under the Decisional Composite Residuosity assumption
(i.e., distinguishing between an element from GN and an
element from (Z/N2Z)∗ is hard), the following holds:

Theorem A.1: The Paillier cryptosystem is semantically
secure [1]. �

B. Secret sharing

Secret sharing is a tool that distributes a secret message
to a number of parties, by splitting it into random shares.
Specifically, t-out-of-n secret sharing splits a secret message
into n shares and distributes them to different parties; then,
the secret message can be reconstructed by an authorized
subset of parties, which have to combine at least t shares.

One common scheme is the additive 2-out-of-2 secret
sharing scheme, which involves a party splitting its secret
message m ∈ Z/NZ into two shares, in the following
way: generate uniformly at random an element s ∈ Z/NZ,
subtract it from the message and then distribute the shares
s and m − s. This resembles a one-time pad scheme. Both
shares are needed in order to recover the secret.

Theorem A.2: Secret sharing is information-theoretically
secure [27]. �
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