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Abstract— In this paper, we study the problem of jointly
retrieving the state of a dynamical system, as well as the state
of the sensors deployed to estimate it. We assume that the
sensors possess a simple computational unit that is capable of
performing simple operations, such as retaining the current
state and model of the system in its memory.

We assume the system to be observable (given all the
measurements of the sensors), and we ask whether each sub-
collection of sensors can retrieve the state of the underlying
physical system, as well as the state of the remaining sensors.
To this end, we consider communication between neighboring
sensors, whose adjacency is captured by a communication
graph. We then propose a linear update strategy that encodes
the sensor measurements as states in an augmented state space,
with which we provide the solution to the problem of retrieving
the system and sensor states.

The present paper contains three main contributions. First,
we provide necessary and sufficient conditions to ensure observ-
ability of the system and sensor states from any sensor. Second,
we address the problem of adding communication between
sensors when the necessary and sufficient conditions are not
satisfied, and devise a strategy to this end. Third, we extend the
former case to include different costs of communication between
sensors. Finally, the concepts defined and the method proposed
are used to assess the state of an example of approximate
structural brain dynamics through linearized measurements.

I. INTRODUCTION

In the last decade, a significant effort was placed in
developing strategies that enable the recovery of the system
state, i.e., the problem of estimating the system’s state. The
applications of such mechanisms include the monitoring of
the electric power grid, process control, swarms of robots,
and social networks [1], [2], [3]. Furthermore, retrieval of the
state of the system enables the assessment of the overall be-
havior of the plant, and allows us to design control strategies
that enable the proper control of the system. Such control
strategies can either steer the system to a specific target,
as in a swarm of robots trying to keep a formation [4], or
stabilize the system, as in the case of the electric power grid
whose frequency should be kept within a given range [5].

The estimation strategies can be broadly classified into
centralized, decentralized and distributed. In centralized
schemes, it is assumed that all the data collected by the
sensors deployed in the plant is available to a central
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entity that, together with the system’s model, performs
the estimation of the system’s state. Observability of the
system is commonly sought to ensure that it is possible
to design stable estimators [6]. Whereas the system might
be observable when all sensors deployed in the system are
considered, the same does not necessarily hold true when
only a sub-collection of the sensors is considered. As a
consequence, we need to enhance the classical schemes with
strategies that only consider a subset of sensors, as in the
case of decentralized estimation [7]. Moreover, we need
to add communication between different sensor locations
to obtain additional information about the system state, as
in distributed estimation [8]. For instance, the sensors can
average either the estimates of the state obtained by different
sensors [9] or the innovations [10], which usually leads to a
smaller amount of information exchanged between sensors.

In this paper, we propose a distributed-decentralized
scheme, i.e., a decentralized estimation in the sense previ-
ously defined, which resorts to communication in a similar
fashion as distributed scenarios. Although it combines ele-
ments from both decentralized and distributed approaches,
the distributed-decentralized approach is distinct from them
in the following sense: it encodes the sensor measurements
as states in an augmented state space that considers the
physical system’s dynamics and the dynamics induced by
the communication between the sensors. As a consequence,
the sensors only need to share their state instead of estimates
of the system’s state or innovations. Moreover, the measured
output of each sensor includes the measurements performed
over the system’s states, as well as the states of the remaining
sensors it communicates with.

This paper was developed in the context of large dis-
tributed systems with wireless sensors, where it is more
convenient to add communication links rather than terminals
to the system. Our method is also a one-time offline step, so
that reaching consensus online in the context of distributed
estimation is avoided, and the problem of not finishing
computations before the following time step is bypassed.

Related Work

Some of the most recent developments in distributed and
decentralized estimation approaches are overviewed, for in-
stance, in [11], [12], [9], [13]. More specifically, the problem
of designing communication networks to solve dynamic
estimation problems has been previously addressed in [14],
where sufficient conditions are provided in terms of the
communication structure and classification of the different
agents (sensors/state variables) in the system.
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In [15], [16], the topology of a static network of sensors
is designed in order to minimize the transmission cost
among sensors and from the sensors to a central authority,
allowing centralized field reconstruction. More recently, [17]
addresses the problem of determining the minimum com-
munication topologies to ensure observability of a multi-
agent’s network, given a potential communication graph.
In [18], some strategies based in consensus-like methods for
distributed estimation are provided by resorting to structural
systems theory. In addition, [19] addresses the stabilization
of a wireless control network with strategies from structural
systems theory applied to augmented state systems.

The main contributions of this paper are threefold. First,
we provide necessary and sufficient conditions to ensure
distributed-decentralized observability. Second, we devise a
method that guarantees observability when the necessary
and sufficient conditions are not satisfied, by adding com-
munication links between sensors. This implies providing
a constructive algorithm that solves a maximum matching
minimum cost problem. Third, we extend the former case to
include different costs of communication between sensors.

The rest of the paper is organized as follows. In Section II,
we provide the formal problem statement. Section III reviews
graph theoretical concepts used in structural systems theory.
Section IV presents the main technical results, and discusses
the computational complexity of the strategies proposed.
Furthermore, the case study in Section V illustrates the main
results in the context of the brain dynamics. Conclusions and
discussions on further research are presented in Section VI.
Due to space limitations, all proofs and additional examples
are omitted and can be found in [20].

II. PROBLEM STATEMENT

Consider a linear time-invariant system described by
x[k + 1] = Ax[k], k = 0, 1, . . . (1)

where x ∈ Rn×1 is the system’s state, and A ∈ Rn×n

the matrix that determines the autonomous dynamics of the
system. In addition, consider m deployed sensors, whose
measurements are described by

yi[k] = cix[k], i = 1, . . . ,m, (2)
where yi ∈ R is the measured output, and ci ∈ R1×n

the output vector that encodes the linear combination of the
states measured by the sensor i.

In addition, we consider that (1)-(2) is observable, but
possibly not when only some subset of sensors is considered,
so that decentralized estimation is not guaranteed. Each
sensor is equipped with a computational unit that is capable
of performing elementary operations: it contains enough
memory to retain the state estimates of the system and
of the sensors, and it is capable of communicating with
other sensors. These assumptions are common in distributed
estimation.

Let G = (V, E) be the directed communication graph
that encodes the interactions between sensors. Here V =
{1, . . . ,m} identifies the m sensors described in (2), and an
edge (i, j) ∈ E , which we refer to as a communication link,

shows that sensor j transmits to sensor i. We consider that
each sensor possesses a scalar state zi, with i = 1, . . . ,m,
and its evolution over time is described as a linear combina-
tion of its previous state, the measured output of the system
and the incoming states from neighboring sensors, i.e.,

zi[k + 1] = wiizi[k] + yi[k] +
∑
j∈N−

i

wijzj [k], i ∈ V, (3)

where N−i = {j ∈ V : (i, j) ∈ E} are the indices of
the in-neighbors of sensor i given by the communication
graph G.

Therefore, the overall dynamics described by (1)-(3) can
be re-written as a linear augmented system:

x̃[k + 1] =

[
A 0n×m
C W(G)

]
︸ ︷︷ ︸

Ã(G)

x̃[k], (4)

where x̃ = [x1 . . . xn z1 . . . zm]ᵀ is the augmented system’s
state, C = [cᵀ1 cᵀ2 . . . cᵀm]ᵀ the measured output and W(G)
the dynamics between sensors induced by the communication
graph, i.e., [W(G)]ij = wij when (i, j) ∈ E and zero
otherwise. We consider that each sensor has access to its own
state, thus, W(G) has a non-zero diagonal. Subsequently,
the output measured by the sensors is given by (2) and
the incoming states from the neighboring sensors, since the
average rule in (3) is performed at the sensor level, i.e., in
its computational unit. Thus, the measured output for the
augmented system is given by

ỹi[k] =

[
− ci − 01×m

0|N−
i |×n

IN
−
i

m

]
︸ ︷︷ ︸

C̃i

x̃[k], i ∈ V, (5)

where IJm is the sub-matrix containing the rows of the m×m
identity matrix with indices in J ⊂ {1, . . . ,m}.

In this setup, we aim to ensure that each sensor’s com-
putational unit is capable of retrieving the state of the
augmented system. In other words, (4)-(5) (or, equivalently,
(Ã(G), C̃i)), is observable for i = 1, . . . ,m. Subsequently,
we aim to address the following three related problems.

Problem 1 Determine the necessary and sufficient con-
ditions that W(G) must satisfy to ensure observability of
(Ã(G), C̃i) for i = 1, . . . ,m. ◦

Problem 2 If the necessary and sufficient conditions to
attain observability of (Ã(G), C̃i) for i = 1, . . . ,m do not
hold, then determine the minimum number of additional
communication links which yield such conditions. ◦

In practice, the sensors might be deployed at varying
distances from one another, making it more convenient to add
some communication links instead of others. In other words,
we can associate costs to the potential communication links
from sensor j to sensor i, which we denote by γij , which
is zero if the communication link already exists. Thus, we
consider the cost of setting a communication link between
any two sensors and we pose the following problem:

Problem 3 If the necessary and sufficient conditions to
attain observability of (Ã(G), C̃i) for i = 1, . . . ,m do not
hold, then determine the minimum number of additional
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communication such that the cost is minimized and observ-
ability holds. ◦

III. PRELIMINARIES AND TERMINOLOGY

The following standard terminology and notions from
structural systems theory and graph theory can be found,
for instance, in [21]. Structural systems deal with the sparsity
(i.e., location of zeroes and, non-zeroes) patterns of matrices,
rather than with the numerical values of the elements. Let
Ā ∈ {0, ∗}n×n be the matrix that represents the structural
pattern of A with the following encoding: if Āij = 0, then
Aij = 0 and if Āij = ∗, where ∗ is an arbitrary non-
specified value ∗, then Aij can take any value. Following
the sparsity pattern, we associate structural matrices to every
matrix in (1)-(2), (4)-(5), that will be employed further.

A pair (Ā, C̄) is structurally observable if and only if there
exists an observable pair (A,C) with the same sparseness
as (Ā, C̄). Moreover, given a structurally observable pair
(Ā, C̄), then almost all pairs of real matrices (A,C) with
the same structure as (Ā, C̄) are observable [22].

Let D(Ā) = (X , EX ,X ) be the digraph representation of
Ā, to be referred to as the state digraph, where the vertex set
X represents the set of state variables and EX ,X = {(xi, xj) :
Āji 6= 0} denotes the set of edges. Similarly, we define
the state-output digraph D(Ā, C̄) = (X ∪Y, EX ,X ∪EX ,Y),
where Y represents the set of output variables and EX ,Y =
{(xj , yi) : C̄ji 6= 0}. A digraph D = (V, E) is strongly
connected if there exists a directed path between any pair
of vertices, i.e., a sequence of edges that starts and ends in
those vertices. A sub-graph Ds = (Vs, Es), with Vs ⊂ V and
Es ⊂ E , is a strongly connected component (SCC) if between
any two vertices in Vs there exists a directed path, and Ds

is maximal among such subgraphs. Visualizing each SCC
as a supernode, one may generate a directed acyclic graph
(DAG), in which each node corresponds to a single SCC and
a directed edge exists between two SCCs if and only if there
exists a directed edge connecting vertices in the SCCs in the
original digraph. In the DAG representation, if the SCC does
not have an edge from any of its states to the states of another
SCC, then it is referred to as sink SCC. Similarly, an SCC
that does not have any incoming edge from other SCC is
called a source SCC.

For any two vertex sets S1,S2 ⊂ V , we define the bipartite
graph B(S1,S2, ES1,S2) associated with D = (V, E), to
be a directed graph, whose vertex set is given by S1 ∪
S2 and the edge set by ES1,S2 = {(s1, s2) ∈ E :
s1 ∈ S1, s2 ∈ S2 }. We refer to the bipartite graph
B(Ā) ≡ B(X ,X , EX ,X ) as the state bipartite graph, and
to B(Ā, C̄) ≡ B(X ,X ∪ Y, EX ,X∪Y) as the state-output
bipartite graph. Given B(S1,S2, ES1,S2), a matching M
corresponds to a subset of edges in ES1,S2 that do not share
vertices. In addition, a maximum matching M∗ is defined as
a matching M that has the largest number of edges among
all possible matchings. Such a matching decomposes the
digraph into a disjoint set of cycles and elementary paths.
The term left-unmatched vertices (with respect to a maximum
matching M∗ associated to B(S1,S2, ES1,S2)) refers to those

vertices in S1 that do not have an outcoming matching
edge in M∗. For simplicity, we often just say a set of
left-unmatched vertices, omitting the explicit reference to
the maximum matching when the context is clear. If we
need to emphasize that the set of left-unmatched vertices is
associated with a specific maximum matching M of the state
bipartite graph, then we make the dependency explicit by
UL(M). Given a vector of weights w associated to the edges
in E , we define a weighted matching as the matching with
weights corresponding to its constituting edges. Moreover, a
minimum cost maximum matching (MCMM) is a maximum
matching M∗ whose edges achieve the minimum cost among
all maximum matchings. Finally, we notice that there may
exist several sets of left-unmatched vertices, since the max-
imum matching M∗ may not be unique.

Next, we state a known result regarding structural observ-
ability. The following theorem is an extension of the dual of
Theorem 5 and Theorem 7 in [21] regarding the necessary
and sufficient conditions for structural observability (see [20]
for details).

Theorem 1: Let D(Ā, C̄) = (X ∪ Y, EX ,X ∪ EX ,Y) de-
note the state-output digraph and B(Ā, C̄) ≡ B(X ,X ∪
Y, EX ,X∪Y) the state-output bipartite representation. The pair
(Ā, C̄) is structurally observable if and only if the following
two conditions hold:

(i) there is a path from every state vertex to an output
vertex in D(Ā, C̄); and

(ii) there exists a maximum matching M∗ associated to
B(Ā, C̄) such that UL(M∗) = ∅. �

IV. MAIN RESULTS

In this section, we present the main results of the present
paper. To give a solution to Problem 1, we propose to
decouple the structure of the problem from its numeric
parametrization. First, we rely on structural system theory
to ensure the necessary conditions, and then we show that
the necessary conditions on the structure are sufficient to
ensure observability through parametrization of the solution.
These results are described in Theorem 2 and Theorem 3.

Furthermore, we investigate the cases when the conditions
for Problem 1 do not hold, as stated in Problem 2 and
Problem 3. The computational complexity of Problem 2 is
given in Theorem 4. Because this is NP-hard, we provide an
approximate polynomial constructive solution to Problem 2,
by describing an algorithm that decides which edges have
to be added to ensure distributed-decentralized structural
observability. The proposed procedure is provided in Algo-
rithm 1 and its correctness and computational complexity
are asserted in Theorem 5. Subsequently, in Problem 3, we
address the situation of different costs for the communication
links between sensors, which is also NP-hard, and whose
approximate solution is similar to that of Problem 2.

A. Solution to Problem 1

First, we ensure that Problem 1 can be solved when
structural observability is sought.
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Theorem 2: Let D(Ã(G)) = (V ≡ (X ∪ Z), EV,V) be
the state digraph, where X corresponds to the labels of
state vertices and Z to the labels of sensors’ states. Let
N−i = {v ∈ V : (v, zi) ∈ E} be the set of in-neighbors
of a vertex zi representing a sensor in D(Ã(G)). The
following two conditions are necessary and sufficient to
ensure that (Ã(G), C̃i), for i = 1, . . . ,m, is generically
observable:

(i) for every z ∈ Z there exists a directed path from any
v ∈ V;

(ii) for every z ∈ Z there exists a set of
left-unmatched vertices UL, associated with a
maximum matching of the bipartite representation of
D(Ã(G)), such that UL ⊂ N−i and UL ∩ X = ∅. �

Structural observability holds for almost all numerical re-
alizations of both Ã(G) and C̃i. Nonetheless, unlike [23], we
want the parametrization of (A,C) to be fixed. Therefore,
we show that with the observability of (A,C) and with a
parametrization of W(G) alone, it is possible to attain the
observability of (Ã(G), C̃i).

Theorem 3: If (A,C) is observable and (Ã(G), C̃i), for
i = 1, . . . ,m, is structurally observable, then almost all
realizations of W(G) ensure that (Ã(G), C̃i) is observable
for i = 1, . . . ,m. �

Remark 1: The proof of Theorem 3 provides a criterion
for choosing the parametrization of W(G) in a deterministic
fashion, such that (Ã(G), C̃i) is observable for i = 1, . . . ,m.

B. Solution to Problem 2

Next, we leverage the conditions prescribed for the solu-
tion to Problem 1 to obtain a solution to Problem 2. For
simplicity, we provide solutions to Problem 2 when one of
the conditions of Theorem 2 holds, hence, only the remaining
condition needs to be ensured. More specifically, we assume
that G is strongly connected (the other case is treated in [20]).
Observe that this is a mild condition since many results in
literature like [18] assume that the communication graph
is strongly connected from its construction. Consequently,
we only need to “bring” the left-unmatched vertices to a
neighborhood of the sensors’ states, as required by condition
(ii) in Theorem 2. Notice that there might exist several
possible sets of left-unmatched vertices associated with max-
imum matchings. In particular, some of these left-unmatched
vertices might be either the dynamical system’s state vertices
or sensors’ state vertices. Since we have assumed that the
original system is observable, we are guaranteed that there
exists a maximum matching such that only UL ⊂ Z .
However, in order to assess if the condition UL ⊂ N−i holds
for a sensor i, we have to explore the matchings that produce
no left-unmatched system’s state vertices.

Theorem 4: The problem of determining the minimum
number of communication links that ensure the observability
of the pair (Ã(G), C̃i), for every i = 1, . . .m is NP-hard. �

Remark 2: In practice, the total number of
left-unmatched vertices is often 0, 1 or 2 [24]. In the
latter case, it is required to find two disjoint paths from the
left-unmatched vertices of the state-output digraph to the

in-neighboring vertices of the sensor’s state, where one can
often be obtained through the state-output digraph and the
other through the communication digraph, if this is assumed
strongly connected. �

As a result of Remark 2, we are able to propose com-
putationally tractable solutions to Problem 2. We need to
produce a strategy that penalizes the left-unmatched vertices
that are the system’s state vertices, and favors those states
in the neighborhood of a given sensor’s state. To this effect,
we employ the MCMM routine, which can be found in [25],
for example. We define G∗ as the union between the com-
munication graph G and the set of the communication links
that have to be added to guarantee observability of the state-
output digraph. The procedure is detailed in Algorithm 1.

Algorithm 1: Finding the communication graph that
ensures observability of (Ã(G), C̃i), given strong con-
nectivity of W(G).

Input: D(Ã(G)) = (V ≡ (X ∪ Z), EV,V), C̃i, i = 1, . . . ,m;
Output: The modified communication graph G∗ and W(G∗);
for i = 1, . . . ,m do

1. Let S = {sj : j ∈ {1, . . . ,m} \ N−i } be the set of
slack variables corresponding to virtual outputs of the
sensors’ state, with EZ,S = {(zj , sj) : j ∈
{1, . . . ,m} \ N−i }, zj ∈ Z, sj ∈ S};
2. Let B(Ã, C̃i, S) = (V,V ∪ S, EV,V ∪ EV,S) be the
state-output bipartite graph of the system with slack
variables;
3. Let the weight function of the edges be w : E → R+,
where E is the set of all edges. Assign the following
costs wi for sensor i: (i) wi(e) = 0, e ∈ EV,V , and (ii)
wi(e) = 1, e ∈ EZ,S ;
4. Define (B(Ã, C̃i, S), w) as the weighted state-output
bipartite graph;
5. Run the MCMM on (B(Ã, C̃i, S), w) and obtain M∗;
6. For all j = 1, . . . ,m such that
{(zj , sj) ∈M∗ \ EZ,S}, add (zi, zj) to G.

Let G∗ = G;
Find W(G∗) that yields the result in Theorem 3.

Intuitively, the introduction of the slack variables S in
Algorithm 1 is related to adding the communication links that
ensure UL ⊂ N−i . Any slack variable sj ∈ UL(M∗) suggests
adding a communication link from sensor zj to sensor zi.

Theorem 5: The procedure outlined in Algorithm 1 is
correct, i.e., its execution ensures the observability of the
augmented pair (Ã(G), C̃i), for any sub-collection of sensors
considered. In addition, the complexity of the algorithm is
O(m(n+ 2m)3). �

In summary, this strategy finds the maximum number
of left-unmatched vertices in the neighborhood of a sen-
sor. Hence, one can simply add communication links from
sj ∈ UL 6⊂ N−i to sensor i. Denote the number of
such left-unmatched vertices with respect to sensor i as qi.
Subsequently, we can perform the same procedure for each
sensor, taking into consideration the edges added previously,
and we end up having a total of q1 + . . . + qm additional
links. This number is less than or equal to the number of
communication links that have to be added for each sensor,
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independently.
One can argue that this strategy is not necessarily optimal

since the number of edges added is not minimal, and some
of the edges added in the procedure for sensor i might be
used in constructing a path in the MCMM for sensor i+ 1.
This problem is NP-hard, as shown in Theorem 4, but, by
Remark 2, the maximum number of left-unmatched vertices
that can appear in practice is two, the difference between the
number of edges added by Algorithm 1 and the minimum
number of edges that need to be added is likely negligible.

C. Solution to Problem 3

The binary cost strategy designed for the solution of
Problem 2 is expandable to variable costs. Suppose we are
provided with a matrix of costs Γ, with elements γij denoting
the costs of adding a communication link from sensor j to
sensor i. Using these costs, we can adapt the previous strat-
egy to the cost constrained problem of choosing the edges
to be added such that the system is distributed-decentralized
observable. The procedure implements the idea of including
the costs γij in the weights for the bipartite representation
(B(Ã, C̃i, S), w).

Theorem 6: Let {γij}i,j∈{1,...,m} be the communication
cost, and consider the following weight structure: (i) wi(e) =
0, e ∈ E ∪ EX ,Y , (ii) wi(e) = γij , e = (zj , sj), zj ∈ Z \
N−i , sj ∈ S, for every i, j = 1, . . . ,m. Algorithm 1 correctly
computes and selects the communication links that have to
be added to ensure the observability of the pair (Ã(G), C̃i),
when the cost of communication is imposed and the weight
pattern wi for i = 1, . . . ,m is considered. �

The proof is similar to the proof of Theorem 5. As before,
the algorithm for finding the MCMM will select the max-
imum number of edges of cost zero. Following the design
of the new weighting pattern, when the communication links
already available are not enough to satisfy UL ⊂ N−i , the
algorithm will try to minimize the cost of the links and
not their number. In addition, observations regarding the
minimum number of communication links can be made, in
a similar manner as in the end of Section IV-B.

V. ILLUSTRATIVE EXAMPLE

In this section, we use the concepts and methodology
proposed in Section IV in the context of brain dynamics. We
consider a linearized brain dynamics associated with data
obtained from electroencephalography (EEG) [26], whose
structure is induced by the brain structural connectivity
obtained via magnetic resonance imaging [27]. Specifically,
consider the brain partitioned in 34 different regions [28],
and its connectivity captured by the digraph D = (V =
{1, . . . , 34}, E), where each v ∈ V labels a different region
and E captures the existence of white-matter tracks between
different regions. The activity in the different regions and
between these is fluctuating, being more pronounced during
the execution of certain tasks. Therefore, following [26], the
state evolution can be captured by considering the first-order
autoregressive model:

x[k + 1] = A(D)x[k] + ε[k], k = 0, 1, . . . ,

y5

y3

y1

y4

y2

x21 x22

x23 x24

x29

...

...

SCC1

SCC2 SCC3

SCC4

. . .

Fig. 1. DAG representation of the 34 regions of the brain, along with the
sensors deployed for measurement of the system. The strongly connected
component labeled as SCC4 contains all the other state vertices not depicted.

where x ∈ R34 is the state of the different regions, and
[Ak(S)]i,j = 0 if (j, i) /∈ E , else, a scalar to be determined,
and εk is the dynamics error. Nonetheless, we assume these
to be zero-one as described in [28], where additionally,
the diagonal entries were set to zero and only 30% of the
off-diagonal entries were considered. The digraph D(A) is
composed of four SCCs as shown in Figure 1, with two
source SCCs containing the states numbered 21 and 23 and
one sink SCC containing the state numbered 22. In addition,
there exists a maximum matching of the state bipartite graph
with unmatched-vertices UL = {21, 22}; hence, measuring
these two variables suffices to ensure structural observability.

For the simplicity of the model (and reproducibility of
the results), we assume that an EEG sensor captures the
behavior of a single region in a linearized manner, i.e.,
yk = IJ34xk, where J = {21, 22, 23, 24, 29} correspond
to sensors deployed in the following scalp locations {AF3,
AF4, T7, T8, Pz} (see details of these locations in [29]), and
consistent with the locations of the EMOTIV Insight [30].
In addition, the system is observable – in particular, we
notice that considering that other regions were simultane-
ously measured by the EEG sensors would not compromise
the observability under the present dynamics. Subsequently,
considering the design topology of this device, we assume
the following communication graph (through wiring) holds:

G =

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1

]
.

Because the system is observable, it follows that it is
also structurally observable, and, in particular, there are dis-
tinct sensors measuring the locations {21, 22}. Furthermore,
notice that there are direct paths from every vertex in the
digraph to every sensor, which implies that condition (i) of
Theorem 2 is satisfied. However, condition (ii) is not fulfilled,
and, therefore, we need to address Problem 3, where we
consider a unit of cost c and a communication cost structure
Γ = [γij ]i,j∈{1,...,m}, in accordance to the distance between

the sensors, given by: Γ =

[
0 2c 3c 4c 4c
2c 0 4c 3c 4c
3c 4c 0 5c 3c
4c 3c 5c 0 3c
4c 4c 3c 3c 0

]
.
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Running Algorithm 1 with the given costs, as in Theo-
rem 6, we obtain that there is only one link from sensor 2 to
sensor 4 that has to be added, while incurring the minimum
cost. The resulting communication scheme that guarantees
observability of the system with respect to each sensor is
G∗, with a total cost of 3c, and a possible communication
protocol W(G∗) with random values of the parameters, given
as following:

G∗ =

[
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 1 0 1 1
1 1 1 1 1

]
and W(G∗) =

[
0.77 0 0 0 0.48
0 0.43 0 0 0.44
0 0 0.30 0 0.50
0 0.51 0 1.00 0.81

1.00 0.79 0.64 1.00 0.37

]
.

In conclusion, the system (Ã(G), C̃i) as in (4)-(5) is observ-
able for all i = 1, . . . ,m.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we addressed the problem of exact
distributed-decentralized retrieval of the states of an LTI
system, from any subset of sensors of the given system. We
considered that the sensors have storing and communicating
capabilities, and that they are inter-linked according to a
communication graph. Our approach involved associating
states to the sensors and constructing an augmented system,
for which we provided the necessary and sufficient condi-
tions to ensure observability from any sensor. Furthermore,
we addressed the problem of re-designing the communication
graph to ensure distributed-decentralized observability when
the previous conditions are not readily fulfilled and proved
that it is NP-hard. We devised a suboptimal solution that can
be attained in polynomial time such that the observability
requirements are satisfied. Moreover, we proposed an exten-
sion to the previous strategy that takes into consideration
the variable costs of adding communication links between
the sensors. We explored the trade-offs between the different
aspects of the control-communication-computation paradigm
for the present setup that employed more communication and
a lighter computational load.

Future research includes identifying subclasses of the
problem in which the solution described in the present
paper is optimal and examining suboptimality guarantees.
Moreover, we notice that, in some scenarios, adding com-
munication capabilities may be more prohibitive than adding
more memory to the sensors. We will further investigate the
implications of having multi-dimensional sensors’ states, and
address the possibility of relying on the same communication
graph and providing different communication schemes such
that a distributed-decentralized scheme is feasible.
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